

000013533

VOLUME II

DRAFT

APPENDICES TO POND WATER MANAGEMENT INTERIM MEASURES/INTERIM REMEDIAL ACTION DECISION DOCUMENT

U.S. DEPARTMENT OF ENERGY

EG&G ROCKY FLATS, INC.

NOVEMBER 22, 1993

LIST OF APPENDICES

APPENDIX

A	Big Dry Creek Segment 4 and 5 Stream Standards
В	Analyte Concentrations for Combined Operable Units 1-8, 10-14 and 16 and Lower South Interceptor Ditches
С	Current Surface Water and Sediment Sampling and Monitoring Requirements
D	Supplemental Information for Risk Assessment
E	Potential Benchmarks
F	Description of Retained Options
G	Evaluation of Personnel Exposure from Proposed Alternatives
Н	Standard Operating Procedures for Pond Water Management

APPENDIX A BIG DRY CREEK SEGMENT 4 AND 5 STREAM STANDARDS

APPENDIX A

TABLE OF CONTENTS

Stream Classifications and Water Quality Standards

Table 1A	Site-specific Organic Chemical Standards Segments 2, 3, 4 and 5, Big Dry Creek $(\mu g/l)$
Table 2	Site-specific Radionuclide Standards (in Pioccuries/Liter)
Table 3	Temporary Modifications Big Dry Creek, Segment 5

APPENDIX A

TABLE OF CONTENTS

Stream Classifications and Water Quality Standards

Table 1A	Site-specific Organic Chemical Standards Segments 2, 3, 4 and 5, Big Dry Creek ($\mu g/l$)
Table 2	Site-specific Radionuclide Standards (in Pioccuries/Liter)
Table 3	Temporary Modifications Big Dry Creek, Segment 5

STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

PEGION: 3	Des 1g	Classifications			AUA.	NUMERIC STANDADOS			7.000000
BACHTSIG Dry Creek									HODIFICATIONS
Stream Segment Description			PHYSICAL And BIOLOGICAL	INORGANIC mg/1	ខ		METALS		QUALIFIERS
Mainstem of 84g Dry Creak, including all tributeries, lakes and reservoirs, from the source to the confluence with the South Plette River, except for specific listing in Segment 2, 3, 4 and 6.	ďn	Aq Life Warm 2 Recreation 2 Agriculture	0.0.=5.0 mg/l pH+6.5.9.0 F.Cel1=2000/100ml						-
Standley Lake.		Aq Life Warm 1 Recreation 1 Water Supply Agriculture	D.O.=5.0 mg/1 pH=6.5.9.0 F.Colf=200/100ml	NH3(ac) = TVS NH3(ch) = 0.06 C12(ac) = 0.019 C12(ch) = 0.011		As(ac)=50(Trac) Cd(ac/ch)=TVS CrII(ac)=50(Trac) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=300(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=50(dis) Mn(ch)=300(Trec) Mn(ch)=300(Trec)	N1(ac/ch)=TVS Sa(ac)=10(Trac) Ag(ac/ch)=TVS Zn(ac/ch)=TVS	See attached Tables IA and 2 for additional standards for asgment 2. Also, Beryllium-4
Great Western Reservoir.		Aq Life Warm 1 Recreation 1 Water Supply	D.0.=5.0 mg/1 PH=6.5-9.0 F.Col1=200/100m1	NH; (ec) = 1VS NH; (ch) = 0.06 C1; (ch) = 0.019 C1; (ch) = 0.011 CN=0.005		As(ac)-50(Trec) Cd(ac(ch)-TVS CrII(ac)-50(Trec) CrVI(ac/ch)-TVS Cu(ac/ch)-TVS	Fe(ch) = 300 (41s) Fe(ch) = 1000 (17sc) Pb(cc/ch) = 14s Fn(ch) = 50 (41s) Hn(ch) = 1000 (17sc)	M1 (ac/ch) =TVS Sa ac = 10 (Trec) Ag (ac/ch) =TVS Zn (ac/ch) =TVS	See attached Tables A and Z for gadditional standards for agment 3. Also, Beryllium-4
tributeries to Women and Walnut Creeks from Valuut Creeks from Valuut Creeks from and Graet Vestern Graet Vestern Specific listings in Sament 5.	ā.	Aq Life Warm 2 Recreation 2 Water Supply Agriculture	D.O5.0 mg/l pH=6.5.9.0 F.Cell=2000/100ml	M+, (ec) = TVS M+, (ch) = 0.10 C1, (ch) = 0.019 C1, (ch) = 0.011 CN=0.005		As(ac)=50(Trac) Cd(ac,cs)=1VS Cr111(ac,cs)=1VS Cu(ac,cs)=1VS	Fe(ch) = 300(d(s)) Fe(ch) = 300(d(s)) Fe(ch) = 50(d(s)) Mn(ch) = 50(d(s)) Mn(ch) = 1000(Trec) Hg(sc) = 0.01(Tec)	N1 (ec/ch)=TVS Se(ec)=10 (TVec) Ag(ec/ch)=TVS Zn(ec/ch)=TVS	See attached Tables A and 2 for Additional standards for segment 4. Also, Beryllume4 ug/l. ug/l.
South Waint Creek, Including all Creek, Including all Creek, Cree	a	Ad Lite Warm 2 Agriculture Agriculture	D.O. = 5.0 mg/l pH=6.5=9.0 F.Cell=2000/100ml	MH5 (CA) = 1 VS MH5 (CA) = 0.019 CA (CA) = 0.0119 CA (CA) = 0.0119 CA (CA) = 0.0119	5-0.002 8-0.15 80-0.5 80-10 80-10 80-20 80-20	A4 (ac) - 50 (1rac) C4 (ac) - 50 (1rac) C4 (ac) - 50 (1rac) Cv (ac) - 1 v S Cv (ac) - 1 v S	Fe(ch)=300(dis) Fe(ch)=300(dis) Ph(ch)=743 Mn(ch)=30dis) Hg(ch)=000(Trec) Hg(ch)=000(Trec)	M (Radionuciide standards have the standards have the quality until all 1/3/1/54. See attached Table 3 for temporary te
South Upper Big Dry Creek and South Upper Big Dry Creek, from their source to Standley Lake.	ď	Aq Life Warm 2 Recreation 2 Water Supply Agriculture	D.O.=5.0 mg/l pH-6.5-9.0 F.Cel1=2000/100ml	NH3(&c) = 1VS NH3(&c) = 0.10 C1, &c = 0.019 C12(ch) = 0.011 CN=0.005	\$=0.002 B=0.75 NO ₂ =0.5 NO ₂ =10 C1=250 SO ₄ =250	As(ac)-50(Trac) Cd(ac/ch)=TVS CFII(ac)=50(Trac) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch) = 300(dis) Fe(ch) = 1000(drec) Pb(ec/ch) = TVS Fn(ch) = 500(dis) Hq(ch) = 0.00(frec)	M1 (ac/ch) = TVS Se ac/en) = TVS Ag ac/en) = TVS Zn ac/ch) = TVS	-

Colorado Department of Health-Water Quality Control Commission, Classification and Numeric Standards South Platte River Basin, Laramie River Basin, Republican River Basin, Smoky Hill River Basin 3.8.0.199

Taken from:

TABLE 1A SITE-SPECIFIC ORGANIC CHEMICAL STANDARDS SEGMENTS 2, 3, 4, AND 5, BIG DRY CREEK¹ (ug/l)

PARAMETER ²	STANDARD ³	PQL ^{4 5}
Acenaphthylene (PAH) ¹²	0.0028	10
Acrylonitrile ⁶	0.058	5
Aldrin	0.00013	0.19
Anthracane (PAH) ¹²	0.0028	1.0
Atrazine ⁶	3.0	0.5 ¹⁰
Benzidine	0.00012	10
Benzo (a) anthracene (PAH) ¹²	0.0028	10
Benzo (a) pyrene (PAH) ¹²	0.0028	10
Benzo (b) fluoranthene (PAH) ¹²	0.0028	10
Benzo (k) fluoranthene (PAH) ¹²	0.0028	10
Benzo (g,h,i) perylene (PAH) ¹²	0.0028	10
Bromodichloromethane (HM)7	0.3	1.0
Bromoform (HM) ⁷	4	1.0
Chlordane ¹¹	0.00058	1.0
Chloroform (HM) ⁷	6.0	1.0
Chloroethyl ether (BIS-2)	0.03	10
Chloromethyl ether (BIS)8	0.000037	10
Chlorophenol	2000	50
Chrysene (PAH) ¹²	0.0028	10
DDT	0.00059	.1
Demeton	0.1	1.09
Dibenzo (a,h) anthracene (PAH) ¹²	0.0028	10
Dibromochloromethane (HM) ⁷	6	1.0
Dichlorobenzidine	0.039	10
Dichlorophenoxyacetic acid (2,4,D)	70	1.0
Dieldrin	0.00014	0.19
Dioxin (2,3,7,8 TCDD)).00000013	0.0113

Endosulfan	0.056	0.1 ⁹
Endrin	0.0023	0.19
Fluoranthene (PAH) ¹²	42	10
Fluorene (PAH) ¹²	0.0028	10
Guthion	0.01	1.5
Heptachlor ¹¹	0.00021	0.05 ⁹
Hexachlorobenzene ⁶	0.00072	10
Hexachlorobutadiene ⁶	0.45	10
Hexachlorocyclohexane, Alpha ¹¹	0.0039	0.05 ⁹
Hexachlorocyclohexane, Beta ¹¹	0.014	0.05 ⁹
Hexachlorocyclohexane, Gamma ¹¹	0.019	0.05 ⁹
Hexachlorocyclohexane, Technical	0.012	0.2 ⁹
Hexachloroethane ⁶	1.9	10
Indeno (1,2,3-cd) pyrene (PAH) ¹²	0.0028	10
Malathion	0.1	0.29
Methoxychlor	0.03	0.5 ⁹
Methyl bromide (HM) ⁷	48	1.0
Methyl chloride (HM) ⁷	5.7	1.0
Methylene chloride (HM) ⁷	4.7	1.0
Mirex	0.001	0.1 ⁹
Napthalene (PAH) ¹²	0.0028	10
Nitrosodi <u>b</u> utylamine N ⁶	0.0064	10
Nitrosodiethylamine N ⁶	0.0008	10
Nitrosodimethylamine N	0.00069	10
Nitrosodiphenylamine N ⁶	4.9	10
Nitrosopyrrolidine N ⁶	0.016	10
Parathion ⁸	0.4	
PCBs	0.000044	1
Phenanthrene (PAH) ¹²	0.0028	10
Pyrene (PAH) ¹²	0.0028	10
Simazine	4.0	0.5 ¹⁰
Tetrachloroethylene ⁶	0.8	1.0 ⁹

Tetrachoroethane 1,1,2,26	0.17	1
Toxaphene	0.0002	5
Trichloroethane 1,1,26	0.6	19
Trichlorophenol 2,4,6 ¹¹	2.0	50°

- In the absence of specific numeric standards for non-naturally occurring organics, the narrative standard "free from toxics" (section 3.1.11(1)(d)) shall be interpreted and applied in accordance with the provisions of (section 3.12.7(1)(c)(iv), so that the standard is interpreted consistently for surface and ground waters.
- All parameters are derived from the, basin-wide tables in 5 CCR 1002-8, §§ 3.8.5(2)(a) and (e) (10-91) or the site-specific Table 1 from 5 CCR 1002-8, § 3.8.5 (3/90), except as noted.
- The standard adopted is the statewide standard from the Basic Standards and Methodologies for Surface Water, 5 CCR 1002-8, § 3.1.0, if a statewide standard exists for the listed parameter, or is the lowest standard found in §§ 3.8.5(2)(a) and (e) (10-91), if no statewide standard exists for the listed parameter.
- PQL's are detection levels based on the Colorado Department of Health's laboratory's best judgment for Gas Chromatography/Mass Spectrophotometry (GC/MS) unless otherwise noted.
- The PQL adopted is the statewide PQL from the Basic Standards and Methodologies for Surface Water, 5 CCR § 3.2.0, if a statewide PQL exists for the listed parameter, or is the lowest detection level found in § 3.8.5.(2)(e) (10-91), if no statewide PQL exists for the listed parameter.
- The standard for this parameter does not change, but the PQL differs from the GC detection limits listed in § 3.8.5(2)(e).
- The basin-wide standards provide one standard for all halomethanes (HM). See 5 CCR 1002-8, § 3.8.5(2)(e) (10-91), Additional Organic Chemical Standards table. Halomethanes is actually a group of chemicals. Thus, the standard for halomethanes is deleted and the statewide standards, 5 CCR 1002-8,§ 3.1.0. (11-91), for the individual chemicals are adopted as site specific standards.
- There is no statewide organic chemical standard for this parameter.
- Gas Chromatography (GC) PQL.
- PQL is not published in existing state regulations. Obtained by DOE/EG&G via personal communication with CDH.
- Both the standard and the PQL change.
- The original site-specific standards provided one standard for all Polynuclear Aromatic Hydrocarbons (PAH). See, 5 CCR 1002, § 3.8.5 (3-90), Table 1. PAH

Table 2 SITE SPECIFIC RADIONUCLIDE STANDARDS* (in Picocuries/Liter)

The radionuclides listed below shall be maintained at the lowest practical level and in no case shall they be increased by any cause attributable to municipal, industrial, or agricultural practices to exceed the site specific numeric standards.

A. Ambient based site-specific standards:

		· · ·		
	Segment 2 Standley Lake	Segment 3 Great Western <u>Reservoir</u>	Segment 4 Segment 5 Woman Creek	Segment 4 Segment 5 Walnut
Gross Alpha	6	5	7	11
Gross Beta	9	12	5	19
Plutonium	.03	.03	.05	.05
Americium	.03	.03	.05	.05
Tritium	500	500	500	500
Uranium	3	4	5	10
·				
B. Other site-s	pecific standard a	pplicable to segm	ents 2,3,4 and 5.	
Curium	244	60		
Neptunium	237	30		

^{*}Statewide standards also apply for radionuclides not listed above.

Table 3 Temporary Modifications Big Dry Creek, Segment 5

parameter	ug/l
carbon tetrachloride	18
tetrachloroethane	76
trichloroethylene	66
copper (TR)	23
iron (TR)	13,200
lead (TR)	28
zinc (TR)	350
manganese (D)	560
Tr = total recoverable	D = dissolved
also,	
ammonia (un-ionized)	1.8 mg/l (March 1-June 30) 0.7 mg/l (July 1-April 31)

All temporary modifications apply until April 1, 1996.

APPENDIX B
ANALYTE CONCENTRATIONS FOR
COMBINED OPERABLE UNITS 1-8, 10-14 AND 16
AND LOWER SOUTH INTERCEPTOR DITCHES

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16
AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES**

			A	AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES	ND LOWE	H SOOIH	NIERCEL	טווט אטו	153						
	Groun	Groundwater (mg/L)			Surface Water (mg/L)	ter (mg/L)		-	Soils	Soils (mg/kg)			Sedime	Sediments (mg/kg)	
			Potential				Potential				Potential***				Potential***
Parameter	Maximum	Minimum.		Maximum⁴	Ę.	Minimum	ARAR	Maximum	·m.	Minimum • •	ARAR	Maxi	Maximum*	Minimum	ARAR
METALS (TOTAL AND DISSOLVED)	(ED)														
	A 75 00 (B)	0000	5.0	293	(A)	0.200	0.200	70600	(B)	40		24800	€	4	
Aluminum			0.01	0.416	₹	090'0	0.146	39.6	(9)	12	3000	42.1	€	12	3000
Antimony	1.6 1.8	J BR (B) 0.010	0.05	1.03	E	0.010	0.05	37	(8)	7		13	€	7	
Alsene	0 9321 (8)	Î	0	87.6	(E)	0.200	1.0	1899	(8)	40	4000	300	3	4	4000
Barum	(E) 0000		. 0	0.09	Û	0.005	0.005	15.5	Ó	0.1	0.143	15.5	€	1.0	0.143
Beryllium	0.025 (E)	Œ	0.01	25	3	0.005	0.01	27.4	<u>©</u>	1.0		2.3	(C)(E)	1.0	
Cadmida	1900			51200	Œ	6.000		312000	Œ	2000		32000	<u>O</u>	2000	
Carcian	0.4 (G)			12	€	1.000		274	<u>(</u>)	200					
	0 172 BB		0.05	0.298	€	0.010	90.0	2 8	(C	2.0	400 (VI)	43.38	ĵ	2.0	400 (VI)
Chromium	2,1,0 El El		0.05	0.489	€	0.050		36	BR (E)	10		12	ĵ	0	
Copari	0 9515 (F)		1.0	0.908	Œ	0.025	0.1	30.62		5.0		40.4	€	5.0	
Copper	57 1 (F)		0.3	3220	3	0.100	0.30	67200	BR (E)	70		33300	€	20	
lion.	021 18	(8)	0.05	0.516	€	0.005	0.050	45.8	(C	1.0		66.4	€	1.0	
111111111111111111111111111111111111111				85.2	€	0.100		47	Œ	20		27.8	(C)(E)	20	
	788 (F)	2.000		7540	Œ	5.000		6490		2000		2970	€	2000	
	. E	0.015	0.05	27.7	€	0.015	0.050	3540	Ō	3.0		1390		3.0	
Mangardae		0.0002		3.97	Œ	0.0002	0.002	114		0.2		0.72		0.2	
Mercury	1.92 88 (8)			0.333	3	0.200		38.65		9		42	Œ)	4	
Moryoderium			0.2	0.646	€	0.040	0.1	71	BR (E)	8.0	2000	34		8.0	2000
Nickel	633 RR (F)			4260	€	5.000		4440	(0)	2000		67000		2000	
Colession	2		0.010	0.55	(Y	0.005	0.010	1.5	Ō	1.0		21.3	€	1.0	
Silicon															

Present in laboratory blank

These are below do not be a consistent time

These are below do not been below do not been that and environmental risk assessment criteria developed for screening purposes as discussed in Section 4.2, or applicable state or federal requirements.

These are based on human basth and environmental risk assessment criteria developed for screening purposes as a beginner of the screening some weathered bedrock)

These are based on human basth and environmental risk assessment. Values include both recent and historic data. Letter in perentheses indicates reference source from list at end of table.

The screening some weathered bedrock)

The screening some weathered bedrock in s

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16 AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES** (Continued)

	Gr	Groundwater (mg/L)			Surface Water (mg/L)	iter (mg/L)			Soile	Soils (mg/kg)			Sedim	Sediments (mg/kg)	
Parameter	Maximum⁺	Minimum**	Potential • ARAR	Maximum⁺	, E	Minimum	Potential ARAR	Maximum⁺	±	Minimum	Potential*** ARAR	Maxir	Maximum⁺	Minimum**	Potential ARAR
METALS (TOTAL AND DISSOLVED) (Continued)	'ED) (Continued)		•										-		
Silver	0.13 (B)	3) 0.010	0.050	0.148	€	0.010	0.050	40.9	<u>0</u>	2.0	200	49.1	ક	2.0	200
Sodium	924 (F	(F) 5.000		17300	(E)	5.000		3680	Õ	2000		670	(E)	2000	
Strontium	7.7 B	BR (B) 0.200		11.9	€	0.200		226	õ	9		179	(E)	9	
Thallium	0.016 (E)	9 0.050										13	<u>©</u>	2.0	
ᄩ	1.121 (E)	9 0.200		1.53	€	0.200		33.8	Û	40		1080	₹	4	
Vanadium	0.092 BR (B)	R (B) 0.050		1.65	€	0.050		108	ũ	0		58.4	(C)	01	
Zinc	4.39 BR (F)	R (F) 0.020	5.0	28.7	(E)	0.020	5.0	195	9	4.0		735	(2)	4.0	

٦**.**

Present in laboratory blank

No data available for OU15 at the present time

These are based on human health and environmental risk assessment criteria developed for acceening purposes as discussed in Section 4.2, or applicable state or federal requirements.

These are based on human health and environmental risk assessment criteria developed for acceentation in human health and environmental risk assessment bedrock)

Maximum concentration may be a one-time measurement. Values include both recent and historic data. Letter in perenthases indicates reference source from list at end of tablo.

Value given is detection or quantitation limit for analysis, in accordance with Statement of Work for General Redicochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v. 1.1, 1990, EG&G Rocky Flats Environment 238 +239 + 240

Redium 238 +239 + 240

(a) = Plutonium 238 +239 +24 (b) = Redium 226 +228 Final Treatability Studies Plan Rocky Reas Plant, Golden, Colorado EGBGJTSP72499/RZT.4-2 07:23-91/RPT/2

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16 AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES** (Continued)

		Groundwater (mg/L)	ar (mg/L)			Surface Water (mg/L)	ter (mg/L)			Soils (r	Soils (mg/kg)		Sedime	Sediments (mg/kg)	
Parameter	Maximum*		Potentia Minimum** ARAR	Potential ARAR	Meximum⁴	, E	Minimum.**	Potential ARAR	Maximum⁺		Minimum**	Potential*** ARAR	Maximum⁺	Minimum	Potential * * * ARAR
ANIONS															
Bicarbonate as CaCO ₂	1100	(F)	10		1900	ક	10								
Carbonate as CaCO ₃	505	BR (B)	10		270	€	10								
Chloride	096	BR (F)	2	250	096	€	2	250							
Cyanide	10.2	(E)	10	10	21	J (E)	10	10	8.8	(E)					
Fluoride	1.7	(0)	5	22											
Nitrate as N	15.5	Ō	2	01	18593	€	ιć	ot	4.3	Ō			35.86 (A)		
Nitrate + Nitrite as N	2000	Œ	Z,	01	0066	₹	ស	01	180	(9)			13 (A)		
Nitrite as N					24	€	2	ഹ							
Sulfate	1900	Œ	ß	250	1900	Œ)	2	250							
Sulfide					120	(A)			13	(C)	4				

Present in laboratory blank

No data available for OU15 at the present time

No data available for OU15 at the present time

Analyzed below detection in int

Analyzed below detection in int

Badrinck (includion in int)

Badrinck (includion in quantitation limit for analysis, in accordance with Statement of Work for General Radiochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v.1.1, 1990, EG&G Rocky Flate Environments

Bustonium 228+239+240

Badrinn 228+228

Badrinn 228+228 ¬∺++

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16 AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES** (Continued)

	9	Groundwater (mg/L)	19/L)		้ง	Surface Water (mg/L)	ter (mg/L)		So	Soils (mg/kg)		Sedime	Sediments (mg/kg)	
Parameter	Maximum⁺		Minimum	Potential ARAR	Maximum ⁺		Minimum**	Potential ARAR	Maximum⁺	Minimum	Potential*** ARAR	Maximum⁴	Minimum**	Potential ** ARAR
INDICATORS														
Conductivity Min. (umho/cm)					73.7	(y)	1							
Conductivity Max. (umho/cm)				·	37120	8	-							
Dissolved Oxygen (mg/L)														
Minimum					0	€		,						
Maximum					70	€	0.5							
Oil and Grease	6.7	(g)			321	(g)	ស					2200 (A)		
Percent Solids (%)														
Minimum									78.9 (G)			14.7 (A)		
Maximum									96.4 (G)			96.4 (A)		
pH minimum (pH units)	5.98	(C)	0.1	6.5	3.4	€	0.1	6,5	5.65 (E)			6.1 (A)		
pH maximum (pH units)	12	(F)	0.1	8.5	10.2	€	0.1	8.5	10.14 (C)			9.03 (C)		
Temperature (degrees C)								.,						
Minimum					2	€								
Maximum					33	€								
Total Dissolved Solids (mg/L)	22000	(F) 10	_	20	41000	€	0	200						
Total Suspended Solids (mg/L)	1800	(F) 5	2		7600	€	ស							

Present in laboratory blank

No data sveliable to 1049 or 0U15 at the present time

No data sveliable to 1049 or 0U15 at the present time

Analyzed below detaction limit

Analyzed below detaction limit

Badrock (includion some weathered below concentration and to the present and historic data. Letter in parentheses indicates reference source from list at end of table.

Value given is detection or quantitation limit for analysis, in accordance with Statement of Work for General Rediochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v. 1.1, 1990, EG&G Rocky Rate Environment

Puttorism 238 + 239 + 240

Redion 226 + 228

Redion 226 + 228

⁽a) = Putonium 238 + 239 + 24(b) = Putonium 238 + 239 + 24(b) = Redium 226 + 228
(b) = Redium 226 + 228
(c) = Redium 226 + 228
Redy Plane Plant, Gelden, Celerade
Ecadors Prizado MCT 4-2 07-23-81 MPT/2

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16
AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES**
(Continued)

Patemeter Maximum* Minimum* ARAR Maximum* Potential Maximum* ARAR Maximum* ARAR Maximum* RADIONUCLIDES (TOTAL AND DISSOLVED) 2.3 (E) 1 25 (E) 1 3.0 2.27.3 Americium 241 2.3 (E) 1 25 (E) 1 3.1 480 Gross Beta 811 BR (E) 2 15 1900 (A) 4 5.0 48.9 Gross Beta 368 (F) 4 50 3800 (A) 4 5.0 48.9 Plutonium 239 + 240 4.6 (G) 0.01 15(a) 120 (A) 4 5.0 48.9 Plutonium 238 9 (G) 0.05 3.0 (A) 0.0 1.6 49.9 Radium 228 1.0 4.59 (G) 1.0 8 1.41 1.4 1.4 1.4 Strontium 89 + 90 4.59 (G) 1.0 8	Groundwater (pCi/L) Surface Water (pCi/L)	Ci/L)		Soils (pCi/g)			Sediments (pCi/g)	(pCi/g)	
'AL AND DISSOLVED) 2.3 (E) 0.01 90 (A) 0.01 30 22 3.1 (E) 1 25 (E) 1 4 5 368 (F) 4 50 3800 (A) 4 5 4 4.6 (G) 0.01 15(a) 120 (A) 0.01 15(a) 204 4.59 (G) 1.0 8 3.2 (A) 0.5 5(b) 5.7 (G) 1.0 8 3.2 (A) 1.0 8 7710 (F) 400 20000 13000 (A) 400 500 32 723 (G) 0.6 861 (A) 0.6 8 65.5 (A) 0.6 30 9 (F) 0.6 65.5 (A) 0.6 0.6 30 30 190 (F) 0.6 386 (A) 0.6 30 <	Potential ARAR Maximum⁴		Maximum⁺	Minimum * *	Potential ARAR	Maximum		Minimum **	Potential** ARAR
2.3 (E) 0.01 90 (A) 0.01 30 25 1 1 2 4 4 5 4 4 5 4 4 5 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 5 4 4 5									
3.1 (E) 1 25 (E) 1 811 BR (E) 2 15 1900 (A) 2 15 4 3.68 (F) 4 50 3800 (A) 4 5 4.6 (G) 0.01 15(a) 120 (A) 0.01 15(a) 0.8 (E)(G) 0.5 30 (A) 0.5 5(b) 4.59 (G) 1.0 8 3.2 (A) 1.0 8 7710 (F) 400 20000 13000 (A) 0.6 723 (G) 0.6 861 (A) 0.6 9 (F) 0.6 655 (A) 0.6 1900 (F) 0.6 3861 (A) 0.6 1900 (F) 0.6 3861 (A) 0.6	(v) 06		2273 (8)	0.02		0.04	(E)	0.02	
811 BR (E) 2 15 4900 (A) 2 15 4 368 (F) 4 50 3800 (A) 4 5 4 4.6 (G) 0.01 15(a) 120 (A) 0.5 5(b) 204 0.8 (E)(G) 0.5 1.0 8 3.2 (A) 0.5 5(b) 204 5.7 (G) 1.0 8 3.2 (A) 400 500 32 7710 (F) 0.6 861 (A) 400 500 32 723 (F) 0.6 861 (A) 0.6 32 9 (F) 0.6 65.5 (A) 0.6 30 190 (F) 0.6 386 (A) 0.6 30			3.1 (B)	0.1		3.2	€	0.1	
368 (F) 4 50 3800 (A) 4 5 5 0.04 4.6 (G) 0.01 15(a) 120 (A) 0.01 15(a) 204 0.08 (E)(G) 0.5 10 15(a) 2.4 (A) 0.05 5(b) 2.4 (A) 0.5 5(b) 2.4 (A)	1900	15	480 (B)	4	D.	77	€	4	ß
4.6 (G) 0.01 15(a) 0.01 15(a) 204 0.8 (E)(G) 0.5 30 (A) 0.5 5(b) 24 (A) 0.5 5(b) 25 5(b) 25 5(b) 25 25(b) 25	3800	J.	49.9 (G)	10	20	20	ĵ	0	8
4.59 (G) 1.0 8 3.2 (A) 0.5 5(b) 2.4 (A) 0.5 5(b) 2.4 (A) 0.5 5(b) 2.4 (A) 0.5 5(b) 3.7 (C) 1.0 8 3.2 (A) 0.6 500 13000 (A) 0.6 500 13000 (B) 0.6 65.5 (A) 0.6 500 1300 (G) 0.6 190 (F) 0.6 386 (A) 0.6 300 300 (G) 0.6 300 100 (F) 0.6 300 (F) 0.6 300 100 (F) 0.6 300 (F) 0.0 (F)	15(a) 120 (A)		20455 (B)	0.03	6.0	3.3	દ્ર	0.03	6.0
4.59 (G) 1.0 8 3.2 (A) 0.5 5(b) 5.7 (C) 1.0 8 3.2 (A) 0.6 861 (A) 0.6 65.5 (A) 0.6 65.5 (A) 0.6 1190 (F) 0.6 386 (A) 0.6 386	30 (A)		1.6 (G)	0.5		1.3	(0)	0.5	
4.59 (G) 1.0 8 3.2 (A) 1.0 8 3.3 (A) 1.0 6 3	€		2.8 (G)	0.5		2.3	€	9.0	
+ 234	37 (C)	0.	1.9 (E)	-		0.5	(C)	-	
7710 (F) 400 20000 13000 (A) 400 500 326 723 (G) 0.6 861 (A) 0.6 65.5 (A) 0.6 60.009 (G) 0.6 1192 (G) 0.6 300 300 190 (F) 0.6 366 (A) 0.6 300	8 3.2 (A)		1.41 (G)	-		0.99	Š	-	
723 (G) 0.6 861 (A) 0.6 6 65.5 (A) 0.6 0.0 0.00 (G) 0.6 1.192 (G) 0.6 190 (F) 0.6 306	20000 (A)		3260 (G)	400		280	(E)	400	
9 (F) 0.6 65.5 (A) 0.6 0.009 (G) 0.6 1.192 (G) 0.6 300	861 (A)	9.	60 (E)	0.3		2.1	€	0.3	
0.009 (G) 0.6 1.192 (G) 0.6 190 (F) 0.6 386 (A) 0.6	65.5 (A)	9.	1.01 (G)	0.3		1.34	€	0.3	
190 (F) 0.6 386 (A) 0.6	1.192 (G)	.6							
	388 (A)	9.	3000 (E)	0.3		2.7	(C)(A)(E)	0.3	
Usanium (Total) 63.7 (B) 0.6 1023 (A) 0.6 5 4	1023 (A)		4 BR (E)	(E) 0.3		4.8	(E)	0.3	

Present in laboratory blank

Passent in laboratory lab

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16
AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES**
(Continued)

										10-11-11-11-11	10.0			Sediments (ug/kg)	(ng/kg)	İ
	Ď	Groundwater (ug/L)	_			Surface Water (ug/L)	ter (ug/L)			- India						Potential **
	Maximum	Minimum	\ <u>;</u>	Potential ARAR	Maximum⁺	ŧ.	Minimum	Potential ARAR	Maximum		Minimum + +	Potential	Maximum		Minimum	ARAR
Parameter												-				
VOLATILES				-			<u> </u>		32	ō	ιo					
1,1-Dichloroethane		(E)			50	₹ 0	വ	7	110	• ()	ស	12000				
1,1-Dichloroethene		<u>(1)</u> (2)		500	42	Ō	ß	200	50	<u>@</u> (nα	120000				
1,1,1-Trichloroethane				28					62	<u> </u>	,					
1,1,2-Trichloroethane	14/40				440	(9)	ស			á	Ľ	7700				
1,1,2,2-Tetrachloroethane				Ľ					120	(g)	וי					
1.2-Dichloroethene	16000			, ,	ď	0	ស	70	140	Ō	ω					
1 2-Dichloroethene (Total)	5070			<u> </u>	9	ì										
1 2-Dichlorooropane	s	(F) 5		n					9	<u>()</u>	ហ	3300	5	ć	9	
1.3-Dichloropropene					•	Œ	10		390	Œ	5		71	<u> </u>	2	
2-Butanone	110	(G) 10			t 7	į			31	(B)	0					
2-Chloroethyhvinylether	1	Ę						-	;	į	\$		220	• (3)	01	
2-Hexanone	975				15	€	10			84 (E)	2 \$	0000008	220	Œ	10	800000
4-Methyl-2-Pentanone	35	(a)		4000	180	€	0	4000	2400	<u>()</u>	2					
Acetone	1300			- CO	83	€	ស	Ω.								
Benzene	83				7) (C)	rc O									
Bromodichloromethane	,	19								ĝ			ဖ	J (E)	S.	
Bromomethane	`;	(S) (C)			19	æ	22			(5)	u	5400				
Carbon Disulfide	21			r.	1005	Ō	ιΩ	<u>ω</u>		2 g	י ע					
Carbon Tetrachloride	28000				94	ર્	S	100	051	2	3					
Chlorobenzene																

Present in laboratory blank

No date available for OUS at the present time

No date available for OUS at the present time

No date available for OUS on burnan health and environmented risk assessment criteria developed for screening purposes as discussed in Numan health and environmental bedook detection limit and environmental process. A second process include both recent and historic data. Letter in parentheses indicates reference source from list at end of table.

Madrown concentration may be a ont-time measurement. Values include both recent and historic data. Letter in parentheses indicates reference source from list at end of table.

Value given is detection or quantitation limit for analysis, in accordance with Statement of Work for General Rediochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v.1.1, 1990, EG&G Rocky Plate Environment of Work for General Rediochemistry and Routine Analytical Services for analysis, in accordance with Statement of Work for General Rediochemistry and Poutine Analytical Services for analysis.

.:: 5 % + +

(a) = Plutonium 238 + 239 + 246 (b) = Redium 226 + 228 Hour Imetakity Sudier Pen Recky Reap Plant, Golden Celorate EG&GATSP)22499/RZT 4-2 07-24-81/RFT/2

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16 AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES** (Continued)

		Groundwater (ug/L)	ter (ug/L)			Surface Water (ug/L)	'ater (ug/L)			Soils (Soils (ug/kg)			Sedimer	Sediments (ug/kg)	
Parameter	Maximum⁺	nm.	Minimum++	Potential ARAR	Maximum⁺	um.	Minimum.**	Potential ARAR	Maximum⁺		Minimum * *	Potential*** ARAR	Max	Maximum⁺	Minimum **	Potential*** ARAR
VOLATILES (Continued)																
Chloroethane	17	(F)	10		70	₹	10		8) (B)	01					
Chloroform	5427	(8)	ល	100	82	€	ιo	100	130	J (B)	ß	110000	8	<u></u>	ស	110000
Chloromethane	₹	9			12.5	€	10						8	Œ	01	
Ethylbenzene	ø	Œ	ហ	680	12.5	₹	ß	1400	780	<u>(8</u>	ហ	8000000	-	(C)	က	8000000
Methylene Chloride	1500	(<u>u</u>)	ស		4	Ō	rz.	ĽĎ,	290	BR (E)	ம	93000	22	Θ	ιó	93000
Styrene	6	@	ıo.					•	17) (B)	D.	-				
Tetrachloroethene	528000	<u>@</u>	ß	10	280	€	ß	ιΩ	10000	<u>(8</u>	ις	140000	œ	Ō	ស	140000
Toluene	270	J (E)	ъ	2420	12	<u>(i)</u>	រេ	14300	640	<u>(8</u>	ល	20000000	80	J (E)	ស	20000000
Trichloroethene	221860	<u>(8</u>	ιc	ú	2500	Ō	ហ	ιΩ	17000	<u>@</u>	2	64000	39	Ō	တ	64000
Vinyl Acetate	39	J (E)														,
Vinyl Chloride	930	(8)	01	10	25	€	10	ō					ស	<u>()</u>	0	
Xylenes (Total)	4	J (B)	r.	7000	13	€	ນດ	2000	3300	(8)	വ	200000000	7	(C)	ro.	200000000

Present in laboratory blank

The data available for OUS at the present time

The data available for OUS at the present time

The data available for OUS at the present time

The data available for OUS at the present time

Analyzed below detection limit

BR Analyzed below detection limit

BR Analyzed below detection limit

BR Analyzed below detection in the measurement. Values include both recent and historic date. Letter in parentheses indicates reference source from list at end of table.

Hacknow concentration may be a one-time measurement. Values with Statement of Work for General Radiochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v.1.1, 1990, EG&G Rocky Flats Environmental Platorium 226+228

Baction 226-228

Baction 226+228

Baction 226-228

Baction 226-228

Baction 226-228

Baction 226-228

Baction 226-228

Baction 226-228

Baction 226-2

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16
AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES**
(Continued)

													10000	
									Soils (ug/kg)	ua/ka)		mipes.	Sediments transfer	
		high)			Surface M	Surface Water (ug,1.)					Potential		Minimum	Potentiel ARAR
	Groundwater (1997)	- Carrier	Potential		•	Minimum	Potential ARAR	Maximum*	\neg	Minimum		Maximum		
	Maximum ⁺ Mi	Minimum	ARAR	Max	Maximum							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
E STORING TO STORING T								23) (E)	330				
SEMIVOLATILES (TOTAL, US/L)								81	J (E)	330	224			
Acenaphthene								110	J (E)	330	1			
Anthracene								68	(E) (E)	000	. •			
Benzo (a) Anthracene								280	<u> </u>	330				
Benzo (b) Fluoranthene								25 25		330				
Benzo (k) Fluoranthane							15000	00	· (0)	330	83000			,
Benzo (k) Pyrene		•	10	220	€	0			J (E)	330	0000000			`
Bis (2-ethylhexyl) Phthalate	100 JBK (U)	2						29	<u> </u>	330	8000000			
Chrysene			•					3643	<u>.</u>	330				
Diethył Phthalate	170 J BR (D)	10	4.0					265	<u>(</u>	330				
Di-n-Butyl Phthalate	56 J BR (D)	10						350	9	330				
Di-n-Octy Phthalate								47	(E)	330				
Fluorene					3	10								
Indeno (1,2,3-cd) Pyrene				- t	3	10			é	330				
2-Methylnaphthalene				}				370	9 🗓	330				
2-Methylphenol N-Nitrosodiphenylamine	100 J BR (D)	0						3/8	1					
Phenanthrene														
							•		2 or applica	able state of	federal requirer	nents.		
* Present in laborato	Present in laboratory blank	nt time	esement cri	teria develo	ped for scret	raing purpor	tes as discussed	in Section 4.	10.17				•	
	No data available for UUS of the state of the sesses of th	entel risk øt	28881110111			is data. Lo	tter in parenther	tes indicates f	eference so	Services Pr	et at and of table otocol (G.R.R.A	S.P.), v.1.1, 1990,	EG&G Rocky F	lats Environm
11 N 1	Analyzed below become weathered bedrock) Addock (include some weathered bedrock) Advanced in the some weathered bedrock include south recent and Nork for General Rediochemistry and nounce of the south resourcement. Values include both recordance with Statement of Work for General Rediochemistry and nounce of the south south resourcement.	surement. r enalysis, il	Values inclut n accordance	de both rec	ent and history	k for Genel	el Radiochemis	ry and rough						
	tection or quantitation													
(a) = Plutonium 238+2- (b) = Radium 226+228	3 + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6													
Fig. 1 restability Studies Free Rocky Flats Plant, Golden, Colorado Rocky Flats Plant, Golden, 4-9, 03-27-9-	1,19071/2													
EG&n/TSP/22499/RZ1.4-2 U/12-2/1														

ANALYTE CONCENTRATIONS FOR COMBINED OPERABLE UNITS 1-8, 10-14, AND 16 AND UPPER AND LOWER SOUTH INTERCEPTOR DITCHES** (Concluded)

:

NOTE: Analytical data received prior to October 1988 not subjected to validation procedure. Some of the contaminant values reported in this table have not yet been validated, and the analyte list may be changed after the data are validated.

(A) EG&G. February 22, 1991a, Surface Water and Sediment Geochemical Characterization Report, Draft Copy
(B) U.S. DOE. April 2, 1990c, Final Phase II Remedial Investigation/Feasibility Study Workplan (Alluvial), OUZ, Draft Copy
(C) U.S. DOE. January 11, 1991a, Proposed Surface Water Interim Measures, Interim Remedial Action Plan/Emmonantal Assessment and Decision Decument South Welliam Measures, Interim Remedial Investigation/Feasibility Study Workplan (Red. OUZ), Draft Copy
(E) U.S. DOE. January 24, 1991b, Phase III Remedial Investigation/Feasibility Study Workplan 881 Hillside Area, OU1, Final Draft
(E) U.S. DOE. October, 1990d, Phase III Remedial Investigation/Feasibility Study Workplan 881 Hillside Area, OU1, Final Draft
(F) EG&G. March 1, 1991b, 1990 Annual RCRA Groundwater Monitoring Report for Regulated Units at Rocky Flate Plant, Draft Copy
(G) EG&G. May, 1991, Unpublished data (See NOTE to references)

Present in laboratory blank
No date evailable for OU9 or OU15 at the present time
No date evailable for OU9 or OU15 at the present time
These are based on human halth and environmental risk assessment criteria developed for screening purposes as discussed in Saction 4.2, or applicable state or federal requiremental.

These are based on human halth and environmental risk assessment criteria developed for screening purposes as discussed in Saction 4.2, or applicable state or federal requiremental.

Bedrock (including some weathered bedrock)
Maximum concentration may be a one-time measurement. Values include both recent and historic data. Letter in parentheses indicates reference source from list at end of table.
Maximum concentration may be a one-time measurement. Values include both recent and Nork for General Radiochemistry and Routine Analytical Services Protocol (G.R.R.A.S.P.), v.1.1, 1990, EG&G Rocky Flats Environmental Norm one of table.

Plutonium 238+239+240 Radium 226+228 (a) = Plutonium 238 + 239 + 24 (b) = Radium 228 + 228 Party Treatality Studer Party Packy Rass Plans, Goden Cedorede EGAGATSP/22/09/RZT 4-2 07:25-91/RPT/2

APPENDIX C CURRENT SURFACE WATER AND SEDIMENT SAMPLING AND MONITORING REQUIREMENTS

APPENDIX C

TABLE OF CONTENTS

Table 1	Summary of NPDES-FFCA Compliance Sampling
Table 2	Summary of Agreement in Principle Compliance Sampling
Table 3	Summary of Operational Monitoring for DOE Orders
Table 4	Summary of Surface Water and Sediment Sampling for the Los Alamos National Laboratory Research Program
Table 6	Sample Volume, Container and Preservation Requirements for Analytes in the Event-Related Surface Water Monitoring Program

Table 1Su	mmary of NPDES/FFCA Compliance Sampling.	
		EDEOUENOV.
LOCATION	ANALYTES	FREQUENCY
Pond A-3	Nitrate	daily during discharge
	Flow	daily during discharge
Pond B-3	5-Day Biological Oxygen Demand (BOD5)	daily
	Total Suspended Solids (TSS)	daily
	Nitrate	daily
	Total Residual Chlorine (TRC)	daily
	Flow	daily
D		
Pond A-4	Whole Effluent Toxicity (WET)	quarterly at discharge
	Non-Volatile Suspended Solids (NVSS)	daily during discharge
	Total Chromium	monthly during discharge
	Flow	daily during discharge
STP	pH	daily during discharge
	Total Residual Chlorine (TRC)	daily during discharge
	Total Suspended Solids (TSS)	three times per week
	Fecal Coliform	three times per week
	Total Phosphorous	three times per week
	Carbonaceous 5-Day BOD	three times per week
	Flow	daily
	Visible Oil and Grease	daily
	Target Analyte List Metals	two times per month
	Volatile Organic Analytes (CLP)	two times per month
	Total Chromium	weekly
	Whole Effluent Toxicity (WET)	quarterly
Pond B-5	Total Residual Chlorine (TRC)	daily during discharge when
		Pond B-3 is bypassed
	Nitrate	Same as TRC
	Whole Effluent Toxicity	quarterly at discharge
	Non-Volatile Suspended Solids	daily during discharge
	Total Chromium	monthly at discharge
	Flow	daily during discharge
Pond C-2	Whole Effluent Toxicity (WET)	quarterly at discharge
	Non-Volatile Suspended Solids (NVSS)	daily during discharge
	Total Chromium	monthly at discharge
	Flow	daily during discharge

LOCATION	ANALYTES	IFREQUENCY
Pond A-3	Plutonium, Uranium, Americium	weekly composite
	Tritium	daily during discharge
	gross alpha/beta	daily during discharge
	Hql	daily during discharge
	Field Parameters	daily during discharge
Pond A-4	Plutonium, Uranium, Americium	weekly composite
- 1.	Tritium	daily during discharge
	gross alpha/beta	daily during discharge
·	pH	daily during discharge
	Nitrate	daily during discharge
	Tot. Suspended Solids/Tot. Dissolved Solids	daily during discharge
	Field Parameters	daily during discharge
D		
Pond B-5	Plutonium, Uranium, Americium	weekly composite
	Tritium	daily during discharge
	gross alpha/beta	daily during discharge
	pH .	daily during discharge
	Nitrate	daily during discharge
	Tot. Suspended Solids/Tot. Dissolved Solids	daily during discharge
	Field Parameters	daily during discharge
Pond C-2	Plutonium, Uranium, Americium	weekly composite
	Tritium	daily during discharge
	gross alpha/beta	daily during discharge
	pH	daily during discharge
	Nitrate	daily during discharge
	Tot. Suspended Solids/Tot. Dissolved Solids	daily during discharge
	Field Parameters	daily during discharge
Ponds A-4	TSS,TDS, Anions, Nitrate, Alkalinity	Predischarge Splits with
B-5, & C-2	Gross alpha/beta	Colorado Department of
	Total Radionuclides (Pu, U, Am, etc.)	Health (CDH), and weekly
·	Semivolatile Organic Analytes (Method 625)	splits with CDH during
	Volatile Organic Analytes (Method 502.2)	discharge.
	Pesticides (Method 608)	Ciocital Sc.
	Herbicides (Method 615)	
	Triazine Herbicides	
	Total and Dissolved Metals (TAL-CLP)	
Ruilding 124	Discourse Heading A	
bulluling 124	Plutonium, Uranium, Americium ITSS, TDS, Anions, Nitrate, Alkalinity	monthly composite

LOCATION	ANALYTES	FREQUENCY
STP	Gross alpha/beta	daily
Effluent	Nitrate	daily
	Chemical Oxygen Demand	daily
	Total Organic Carbon	daily
	Dissolved Oxygen	daily
	Tritium	daily
	Amonia	daily
	Hardness	daily
	Plutonium, Americium, Uranium	daily
	Field Parameters	daily
STP	Gross alpha/beta	daily
Influent	Н	daily
	Chemical Oxygen Demand	daily
	Total Organic Carbon	daily
	Dissolved Oxygen	daily
	Total Kjeldahl Nitrogen	daily
	Amonia	daily
	Carbonaceous 5-Day Biological Oxygen Demand	three times per week
	Volatile Organic Analytes (CLP)	two times per month
	Field Parameters	daily
Pond A-4	Plutonium, Uranium, Americium	weekly when not discharging
Pond C-2	Plutonium, Uranium, Americium	weekly, 4 weeks prior to
		discharge
Pand C 1		
Pond C-1	Gross alpha/beta	daily
	Flow	daily
	Tritium _	daily
	Plutonium, Uranium, Americium	weekly composites
·	Field Parameters	daily
50/904	gross alpha/beta	during precipitation events
Pad	рН	during precipitation events
Runoff	Nitrate	during precipitation events
	Cyanide	during precipitation events
	Target Analyte List Metals plus Mercury	during precipitation events
	Volatile Organic Analytes (CLP)	during precipitation events
	Amonia	during precipitation events
	Field Parameters	during precipitation events

reneral (1997), in the control of th

Table 3Con	ntinued	
LOCATION	ANALYTES	IFREQUENCY
750 Culvert	gross alpha/beta	weekly
	Total Dissolved Solids	weekly
	Nitrate	weekly
	Tritium	weekly
	pH	weekly
	Field Parameters	weekly
Footing	Gross alpha/beta	quarterly
Drains&	Tritium	quarterly
Building	На	quarterly
Sumps	Target Analyte List Metals	quarterly
(18 sites)*	Volatile Organic Analytes (method 524.2)*	Three quarterly samples initially, on an as-needed basis thereafter,
	Semi-Volatile Organic Analytes (CLP)*	minimum of annual analysis*
	Field Parameters (conductivity, temperature)*	quarterly
	TDS, Total Nitrates*	quarterly *
Building 124	Volatile Organic Analytes	bi-annually
Water	Unregulated Organics	quarterly
Treatment	gross alpha/beta	quarterly
Plant (Safe	Nitrate	annually, February
Drinking	Strontium-90	annually, February
Water Act)	Tritium	annually, February
	Metals	annually
	Anions, Alkalinity	annually
	Corrosivity	bi-annually
	Copper and Lead	Monthly July to December
	Micro Coliform	monthly
Onsite Tap	Total Coliform	quarterly
Water		
(SDWA)		
30 Sites		

^{*}Changes as per telecom with Leslie Dunstan on November 18, 1993.

Table 4Summary of Surface-Water and Sediment Samp	in in the Free V	Namus
National Laboratory (LANL) Research Program.		
LOCATION	4414135550	EDEOUENO.
LOCATION	ANALYTES	FREQUENCY
Sewage Treatment Plant, Pond A-4, Pond B-5,	LANL LIST	Monthly
Pond C-2		
Pond A-1, Pond A-2, Pond A-3, Pond B-1, Pond B-2,	LANL LIST	Quarterly
Pond B-3, Pond B-4, Pond C-1		
Stream Water per	LANL LIST	40 per year
Project Manager		
Sediment Samples per	LANL LIST	40 per year
Project Manager		1

Table GSample VC	Digitie, Contain	(\A/c : - A :	vation Requirements	T -	
Analytes in the Ever	nt-Related Sur	tace-Water Mo	nitoring Program.		
	ļ.,		 		
<u> </u>	Volume of	Volume			
	Individual	Required for Analytical		 	
	Samples from Auto-				Analytical
Class of Analytes	sampler	Methods	Preservative	Container	Methods
Total					
Target Analyte			Nitric Acid to		CLP-Metals
List (TAL) Metals	1 Liter	100 ml	pH<2	Polyethylene	SW846-GFAA
Total		-	Nitric Acid to		
Non-TAL Metals	1 Liter	100 ml	pH<2	Polyethylene	CLP & SW846
77.2 77.0.0	1		 		ICPAES &
					GFAA
Total			Nitric Acid to		-
Radionuclides	4 Liters	4 Liters	pH<2	Polyethylene	GRRASP
-Pu, U, Am	7 11013	7 0.013	P. 1 Z. 2		
-Gross Alpha	 	 	 		
-Gross Beta	 	 			
-Tritium (only at	 	1			
GS11, GS12, and	 	1			
GS13)		†			1
	 				1
Water-Quality					
Parameters					
-Anions	1 Liter for	1 Liter plus	Cool to 4 degrees	Polyethylene	300.0
-Alkalinity	ail con-	250 ml	•	Polyethylene	310.1
-Conductivity	stituents		*	Polyethylene	120.1
-TSS,TDS	plus 250 ml		•	Polyethylene	160.1,160.2
Nitrate/Nitrite - N	for Total P.		•	Polyethylene	353.1
-Total P			•	Polyethylene	365
BOD	2 Liters	2 liters	Cool to 4 degrees	Poly or Glass	SW846
VOAs	120 ml*	3x40ml	Cool to 4 degrees	Glass VOA Vial	CLP
(Manually			HCI to pH < 2		502.2
Collected)					
CL Semi-VOAs	2 L.*	2x1 L	Cool to 4 degrees	Amber Glass	624
(Manually		1			
Collected)					
Pesticides/PCB	350 ml	350 ml	Cool to 4 degrees	Amber Glass	505
(Manually		1 000 1111	COURT Wagieds		1
Collected)	 	 			
	I Donation 1		Analytical Services	D	-

^{*}Changes as per written instructions by Greg Wetherbee on November 4, 1992.

APPENDIX D SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT

APPENDIX D

TABLE OF CONTENTS

Supplemental Information for Risk Assessment (General)

Supporting Statistical Information for Pond Water Management Risk Assessment

Tables D-1.1 through D-1.8: Human Health Risk Assessment COCs

Tables D-2.1 through D-2.8: Human Health Cancer and Noncancer Risk

Tables 1 through 5: Data Summary Tables

SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT (GENERAL)

APPENDIX D SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT

This appendix contains supplemental information regarding calculation of RfDo's, background studies and models for chemical carginogency, and effects of radiation on human health.

Calculation of Reference Doses

Oral Reference Dose (RfDo) values (in units of milligrams per kilograms per day [mg/kg/day]) are typically calculated by dividing a NOEL, NOAEL, or LOAEL dose (in units of mg/kg/day) by an uncertainty or safety factor that typically ranges from 10 to 10,000. Thereafter, the RfDo is rounded to one significant figure. The NOEL, NOAEL, and LOAEL are defined as follows:

NOEL: No Observed Effect Level-The dose at which there are no statistically

or biologically significant increases in the frequency or severity of effects between the exposed population and the corresponding control

population (i.e., no measurable effects are produced at this dose).

NOAEL: No Observed Adverse Effect Level-The dose at which there are no

statistically or biologically significant increases in the frequency or severity of adverse effects between the exposed population and the corresponding control population. Effects are produced at this dose, but

they are not considered adverse.

LOAEL: Lowest Observed Adverse Effect Level-The lowest dose of a chemical in

a study or group of studies that produces statistically or biologically significant increases in the frequency or severity of adverse effects

between the exposed population and its appropriate control.

RfDo values are derived from the NOEL, NOAEL, or the LOAEL for the critical toxic effect by the consistent, conservative application of uncertainty factors (UFs) and modifying factors (MFs), as follows:

$$RfDo = CE/(UF \times MF)$$
 (1)

where:

RfDo = Chronic (or subchronic) Oral Reference Dose (rounded to one significant figure)

CE = Lowest critical or no effect level (i.e., NOEL, NOAEL, or LOAEL)

UF = The <u>product</u> of one or more uncertainty factors

MF = Modifying factor

UFs are generally applied as multiples of 10 (although values less than 10 are sometimes used), with each factor representing a specific range of uncertainty inherent in extrapolating data to derive a "safe concentration" for human exposure.

APPENDIX D SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT

(Continued)

To derive the RfDo values, UFs are applied as follows:

- If the NOAEL is based on human data, a UF of 10 is usually applied to account for variation in sensitivities among individuals. It is intended to protect sensitive subpopulations (e.g., the elderly and children).
- If the NOAEL is based on animal data, an additional UF of 10 is used to account for the interspecies variability between humans and other animals.
- If the NOAEL is derived from a subchronic instead of a chronic study, an additional UF of 10 is applied to extrapolate a subchronic value to a chronic value.
- If an LOAEL is used instead of an NOAEL, an additional UF of 10 is used to
 account for the uncertainty associated with extrapolating from LOAELs to
 NOAELs.

In addition to the UFs listed above, an MF can be arbitrarily applied. MFs range from 1 to 10 and reflect a qualitative professional assessment of additional uncertainties not specifically addressed by the above-mentioned UFs. The default MF value is 1.0.

Background Studies and Models for Chemical Carcinogenicy

Evidence of chemical carcinogenicity originates primarily from two sources: lifetime studies with laboratory animals and human (epidemiological) studies. For most chemical carcinogens, animal data from laboratory experiments represent the primary basis for the extrapolation. Major assumptions arise from the necessity of extrapolating experimental results: across species (from laboratory animals to humans); from high-dose regions (to which laboratory animals are exposed) to low-dose regions (levels to which humans are likely to be exposed in the environment); and, across routes of administration (inhalation versus ingestion). Federal regulatory agencies have traditionally estimated human cancer risks associated with exposure to chemical carcinogens on the administered-dose basis according to the following approach:

- The relationship between the administered dose and the incidence of cancer in animals is based on experimental animal bioassay results.
- The relationship between the administered dose and the incidence of cancer in the low-dose range is based on mathematical models.
- The dose-response relationship is assumed to be the same for both humans and animals, if the administered dose is measured in the proper units.

APPENDIX D SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT (Continued)

Thus, effects from exposure to high (administered) doses are based on experimental animal bioassay results, while effects associated with exposure to low doses of a chemical are generally estimated from mathematical models.

For chemical carcinogens, EPA assumes a small number of molecular events can evoke changes in a single cell that can lead to uncontrolled cellular proliferation and tumor induction. This mechanism for carcinogenesis is referred to as stochastic, which means that there is theoretically no level of exposure to a given chemical that does not pose a small, but finite, probability of generating a carcinogenic response. Since risk at low exposure levels cannot be measured directly either in laboratory animals or human epidemiology studies, various mathematical models have been proposed to extrapolate from high to low doses (i.e., to estimate the dose-response relationship at low doses). The three most frequently used models are the one-hit model, the log-probit model, and the multistage model. The one-hit model is based on the premise that a single molecule of a contaminant can be the single event that precipitates tumor induction (Cornfield, 1977). In other words, there is some finite response associated with any exposure. The log-probit model assumes that a response is normally distributed with the logarithm of the dose (Mantel et al., 1971).

This theory seems to have little scientific basis, although some physiological parameters are lognormally distributed. This model usually yields much lower potency estimates due to the implied threshold at lower doses.

Currently, regulatory decisions are based on the output of the linearized multistage model. The basis of the linearized multistage model is that multiple events (versus the single-event paradigm of the one-hit model) may be needed to yield tumor induction. The linearized multistage model reflects the biological variability in tumor frequencies observed in animals or human studies. The dose-response relationship predicted by this model at low doses is essentially linear. Use of this model provides dose-response estimates intermediate between the one-hit and the log-probit models. It should be noted that the slope factors (SFs) calculated for nonradiological carcinogens using the multistage model represent the 95th percentile upper confidence limit on the probability of a carcinogenic response. Consequently, risk estimates based on these SFs are conservative estimates representing upper-bound estimates of risk where there is only a 5 percent probability that the actual risk is greater than the estimated risk.

Most models produce quantitatively similar results in the range of observable data, but yield estimates that can vary by three or four orders of magnitude at lower doses. Animal bioassay data are simply not adequate to determine whether any of the competing models are better than the others. Moreover, there is no evidence to indicate that the precision of low-dose risk estimates increases through the use of more sophisticated models. Thus, if a carcinogenic response occurs at the exposure level studied, it is assumed that a similar response will occur at all lower doses, unless evidence to the contrary exists.

APPENDIX D SUPPLEMENTAL INFORMATION FOR RISK ASSESSMENT (Continued)

For radionuclides, human epidemiological data collected from the survivors of the Hiroshima and Nagasaki bomb attacks form the basis for the most recent extrapolation put forth by the National Academy of Science (1980). Conversely, for most nonradiological carcinogens, animal data from laboratory studies represent the primary basis for the extrapolation. Furthermore, in the past, risk factors for radionuclides have generally been based on fatalities (i.e., the number of people who actually died from cancer), while SFs for nonradiological carcinogens are based on incidence (i.e., the number of people who developed cancer).

Effects of Radiation on Human Health

Ionizing radiation has sufficient energy to interact with matter and produce an ejected electron and a positively charged ion. These positively charged ions, known as free radicals, are highly reactive and may combine with other elements or compounds within a cell to produce toxins or otherwise disrupt the chemical balance, which results in mutations or other deleterious effects. Radionuclides are characterized by the type and energy level of the radiation emitted. Radiation emissions fall into two major categories: particulate (electrons, alpha particles, beta particles, protons) or electromagnetic (gamma and x-rays) radiation.

The general health effects of radiation can be divided into stochastic and nonstochastic effects, i.e., those health effects related to dose and those not related to the dose. The risk of developing of cancer from exposure to any amount of radiation is a stochastic effect. Examples of nonstochastic effects include acute radiation syndrome and cataract formation, both of which occur only at high levels of exposures.

Radiation can damage cells in different ways. First, the radiation can cause damage to the strands of genetic material, DNA, in the cell. The cell may not be able to recover from this type of damage, or the cell may live on but function abnormally. If the abnormally functioning cell divides and reproduces, a tumor or mutation in the tissue may develop. The rapidly dividing cells that line the intestines and the stomach and the cells that make blood in the bone marrow are very sensitive to this kind of damage. Organ damage results from the damage caused to the individual cells. This type of damage has been reported with doses of 10 to 500 rads. Acute radiation sickness is seen only after doses of greater than 50 rads. This dose is usually only received by personnel in close proximity to serious nuclear accident.

When the cells damaged by radiation are reproductive cells, genetic damage can occur in the offspring of the person exposed. The developing fetus is especially sensitive to radiation. The type of malformation that may occur is related to the stage of fetal development and the cells that are differentiating at the time of exposure. Radiation damage to children exposed while in the womb is related to the dose the pregnant mother received. Mental retardation is another possible effect of fetal radiation exposure.

APPENDIX D SUPPORTING STATISTICAL INFORMATION FOR RISK ASSESSMENT

APPENDIX D SUPPORTING STATISTICAL INFORMATION FOR RISK ASSESSMENT

All information in this introduction and appendix was excerpted or summarized directly from the following EG&G Statistical Application Reports created for the pond water quality risk assessment:

SA-93-012 Statistical Determination of Proposed Contaminants of Concern for the Pond Water Quality IM/IRA. June 7, 1993.

SA-93-014 Summary Statistics for the Pond Water Quality IM/IRA. July 30, 1993.

SA-93-015 Summary Statistics in Support of the Risk Assessment for the Pond Water Quality IM/IRA. July 30, 1993.

Determination of Proposed Contaminants of Concern (PCOCs)

PCOCs were identified in pond water through a statistical comparison of background and site data. If levels of an analyte were statistically significantly greater in the site data, the analyte was classified as a PCOC and used in the risk assessment process described in Section 2.5 and in Tables D-1.1 through 1.8.

The statistical determination of PCOCs through comparisons of background and site data were complicated by the presence of nondetects at multiple detection limits. The branching flowchart for selecting appropriate statistical methodology was presented in the Statistical Applications report SA-93-010 for OU 2 and is contained on the following page. In this flowchart, two cases use non-statistical criteria for PCOC determinations. In the first case, for volatile organic analytes/semi-volatile organic analytes (VOAs/SVOAs), no background levels are expected; therefore, no background comparison is made. Instead, an administrative convention is used which labels analytes PCOCs if a standard is exceeded or if five percent or more detects are present. In the second case, if fewer than ten percent detects have been observed for both site and background data, statistical comparisons are not practical; therefore, PCOC determination is based only on the exceedance of a standard. In this latter case, the designation is referred to as a "potential COC."

For the remaining cases identified in the chart, statistical comparisons of site and background data are made. For large numbers of non-detects, a nonparametric scores approach was recommended in the OU 2 report. This scores approach reduces to the common Mann-Whitney/Wilcoxon nonparametric rank test for comparing two groups of data when no nondetects are present. It was shown in the OU 2 report that essentially identical PCOC determinations result if the scores test approach is used, even for the cases of no or minimal numbers of nondetects. For this reason, the scores approach was used in this report for all statistical comparisons, primarily to avoid the questionable practice of nondetect replacement and the tedious analysis sequence including sample size considerations, goodness-of-fit testing, data transformations, and variance testing for the many analytes involved. Again, it is emphasized that using the scores approach universally rather than branching to a t-test or Mann-Whitney/Wilcoxon test in the flowchart will only very rarely generate a different PCOC conclusion, and in such cases anomalous data such as outliers are likely the cause of

ting and the second particles of the particles of the second seco

SUPPORTING STATISTICAL INFORMATION FOR RISK ASSESSMENT (Continued)

The p-values below 0.05 in Tables D-1.1 through D-1.8 indicate that site values are elevated relative to background or literature comparison values, and the result is a PCOC determination. The statistical source of these p-values is the scores test described above. The 0.05 level for the p-value is the Type I error probability of obtaining a sample which leads to a PCOC determination when in fact the underlying site analyte levels are not elevated relative to background.

Determination of Mean Values in Summary Statistics

Means for background and site data were calculated to facilitate risk assessment. However, it is crucial to note that means are fairly volatile estimates of the data set in the presence of nondetects and outliers, occurrences which are common in environmental data. It could even be the case that a PCOC determination would be made by the nonparametric ranking methods when the background mean was greater than the site mean. This would occur if extreme outliers were present in the background while the bulk of the site data was in fact elevated relative to the bulk of the background data. Means are highly affected by such outlying values.

In addition, it is essential to note that the mean, median, 85th percentile, and interquartile range values displayed in Tables 1-5 require special treatment for the non-detect values at varying detection limits. For small numbers of non-detects (less than 20 percent), the statistical measures computed should be relatively insensitive to the handling of non-detects. For larger numbers of non-detects, no good method of handling the many non-detects at multiple detection limits exists. The shortcomings of using such statistical measures in these cases should be realized.

The convention for handling the non-detect values when calculating mean values was uniform replacement. For example, if four non-detects were observed at the detection limit value of 10.0, they were replaced by the values 2.0, 4.0, 6.0, and 8.0. Note that in many cases this could result in the maximum reported value for an analyte actually being a replacement value for a non-detect. Since this is a poor alternative, any non-detects that were more than twice the maximum detected value for all pond locations were omitted from the summary statistics computation.

SUPPORTING STATISTICAL INFORMATION FOR RISK ASSESSMENT (Continued)

Other Information Not Included in This Text

Not all statistical information generated in support of the risk assessment is included in this appendix due to volume considerations; however the tables included in Section 2.5 and this appendix should provide adequate information for most purposes. Information generated but not included in this appendix follows:

- 1) Box and whisker plots used in PCOC determinations;
- 2) Various tables and graphs involving summary statistics for the ponds including minimum detect and nondetect values;
- 3) Statistical tables and graphs involving distribution tests for normal and lognormal distributions; and
- 4) Printout of the data set.

TABLES D-1.1 THROUGH D-1.8 HUMAN HEALTH RISK ASSESSMENT COCs

HUMAN HEALTH RISK ASSESSME. C's: Site 1 - Ponds A1 and A2

Table L (page 1of 2)

			SITE						BACKGROUND	و		SCORES	L	POTENTIAL	ESSENDAL	195	LITERATURE VALUE		KUMAN	COMMENTS
- interest	7777	LOGNORMAL	MAY DETECT	DETECTION	SAMPLE	\vdash	7777 3 1077 7	LOGNORMAL	-	ECTION	SAMPLE PER	Г				Z	MEAN	MAX	HEALTH	
Comanian	SOMICE MEAN	MEAN	TO STATE OF THE ST	FREQUENCY	SIZE	NONDETECT		95% UT.	DETECT FR			NONDETECT VALL				€	3	_	တ္	
RADIONUCLIDES	(PCi/I)	(PCI/I)	(pCl/l)				(PCI/I)	(bCi/l)	(PCI/I)											
AMERICIUM-241	0.018	0.034	0.064		٥		0.004	0.023	0.024		82	0:0	0.0016	YES		•	_		YES	max>UIL, sig p vortue, sife=3°BG
CESIUM-137	0.108	0.247	0.58		12		960:0	1.158	1.7		92	0.4	0.4496	Q.						
PLUTONIUM-239/240	0.022	0.028	0.042		7		0,004	0.017	900		8	 0.0	0.0001	YES					YES	mac-UIL, sig p volye, site=4*8G
STRONTIUM-89,90	0.589	0.75	0.8919		12	-	0.546	1.893	8: 1		22	0.7		2 :						
TRATIUM	55.75	173.774	S .		۷ ;		51.452	1403.865	3 5		3 9			Q §						
URANIUM 233,234	3.346	3.8/2	4.952		4 ;		0.458	1.364	3.55 6.57		8 3			YES						maxsUff, sig p value, alte=7*BG
UKANIUM-235	0.203	0.313	38:0		₹ ;		3 8	0.193	0 .		8 3	70 6		YES		,				max>UIL, ag p vatue, stee=4*BG
URANIUM-238	4.917	8	6.929		10		0.30	2	787		3),	0.000	VES			\dagger	+	YES	max>UIL, sg p value, ste*10*8G
METAIS	(Ling (I)	Q019	(July				(hor)	Word	(July)				-			(NOW)	(/0/0	(July		
	(JAC)		(infa)										-	-				(in)		
ALUMINUM	209.635	400.4	1500	60	13	38.5	695.294	4404.622	5840	79	100		0.9556	ON ON				98		ta
ANTIMONY	9.392	14,935	N/A	0	13	Ø.	14.23	55.28	26.5	•	6	20.1	N/A	ON ON				-		
ARSENIC	3.915	10.565	7.8	01	13	23.1	1,781	8.183	2.9	0	28		0.0001	- KB		-		Q	2	sig p value, site= within BG liter, range
BARIUM	50.477	63.678	92	5	13	0	67.617	148.877	306	8	183		0.9168	 Q		۰		152		
BERYLLUM	0.369	0.62	A/A	0	22	8	0.943	4.756	8.4	•	87	1.89	N/A	Q.		_		130		no detects
CADMIUM	1.462	2:091	A/X	0	60	100	1.744	6.426	Υ/Z	0	8	001	N/A	<u>Q</u>					<u></u>	no detects
CALCIUM	27984,615	35650	46900	52	13	0	24924.572	96761.525	74600	125	125		0.1262	Q Q	YES					
CESIUM	153,462	660.581	23	-	13	92.3	247.467	1551.727	400	60	8		X/A	9	-		0.02			
CHROMIUM	1.538	2.413	A/X	0	13	8	4.234	16.863	18.9	15	6		0.9576	Ş		0.73	2	æ		no detects
COBALT	1.512	2.527	N/A	0	13	8	2.398	9.256	7.9	•	88		N/A	Q.			0.2	5.8		no defects
COPPER	2.068	3.127	3.7	_	=	6:06	6.198	28.468	15.5	8	8		0.9974	<u>Q</u>		0.83	2	28		
IRON	211.185	387.305	0011		5	46.2	1335.636	6637.829	26300	118.9	&		0.9994	2	YES					
LEAD	2.023	4.62	=	4	5	69.2	2,044	8.567	5	37	<u>s</u>		0.6032	SI !		6)		€ 8		max slightly>UTLinsig p value
MOILLIA	44.777	48.778	56.2	13	2	Ó	13.711	63.036	9:	47	8		0000	. YES		9.075	 = ₁	33		signovatue, site = 4*BG
MAGNESIUM	30046.154	33207.1	35500	<u>e</u> :	<u>e</u>	0 0	5279.619	11266.249	0099	8 3	<u>8</u>	10.2	0.0001	S S	ES.		-	-	2 9	2
MANGANESE	128.177	470.601	88 G	<u> </u>	2 5	5 6	15.3	486.154	9	1.2.1	2 2		1837	S 2		6		<u> </u>		max>U1Linsig p value
MERCURY	0.12	0.239	0.30	- c	2 5	2,2,3	0.14	0.000	- 7.	٥ ٢	ž 6		N/A	2 2		 		2 %		
MOLYBDENOM	2.912	4.450	0.0	7 4	2 2	9 6	7.384	13.05	2 2	2 2	3 4		00000	2 %			5			in to both to control 1/19 of control of
NICKEL BOTASSIIM	770 5077	10.13y	, w	<u> </u>		3	1775,375	543.06	670	<u> </u>	, E		251000	3 12	×Ex		2	:		and by value, or any and any and any and any and any
SELENITA	1.0	2,334	1.8	2 8	13	94.6	1,378	5.462	2	3 4	8		0.0326	. E		0.1	0.2	08	2 0	Stability star b. max & mean = BG
SILICON	1075.893	3380.199	2680	=	7	21.4	5861.897	19227.637	11700	39	30		_	<u>Q</u>						
SILVER	1.946	3.306	N/A	0	23	8	2,856	11.482	7.9	12	88	86.4 0.9	0.9195	Q		0.09		0.55 (3)		no detects
Muldos	171384	185825.463	213000	13	13	0	17166.929	38052.976	45400	126	127	0.8 0.0	0.0001	YES	YES				Ş	essential nutrient
STRONTIUM	339.615	394.417	486	5	13	0	195,594	472.439	80	66 6	90	0	0,000	VES	·	6.3		208	YES	nax-UIL, sig p value, site=2*8G
THALLUUM	1.545	2.728	2.1	_	52	92.3	58	3.866	3.4	m	9		A/A	<u>Q</u> :						
<u></u>	7.746	11.367	N/A	0	12	8	22.609	92.862	<u>8</u>	17	8		0.989	2	2					no detects
VANADIUM	3.369	2,608	7.1		<u></u>	46.2	7.836	42.095	18.2	57	27	70.7	0.2974	<u>Q</u>					٠	
ZINC	5.7	14.143	%	e	5	76,9	38.291	182.699	98	87.9	123		0.9997	 §		vo	<u>-</u> e	8		
CINACIONI	(Circle)	(Port)	() Charl				(non)	(na/)	(na/h		-	-	-							
	(185)																			
CYANIDE	00:00	0.011		0	7	8	9000	180.0	0.0404	е	8		A/N	Q.					i y	no defects
NITRATE	N/A	A/A	A/A	N/A	ζ Ż	N/A	0.15	X/X	0.25		7			Y Z				3	-	no sample data
NITRATE/NITRITE	0.013	0.212	0.37	•	7 ;	57.1	0.389	3.11	4.3	72	128			2 9						
NITRITE	0.01	0.022	30.0	-	4	42.9	ZIO.U	0.054	8000	2	Q	\$	¥/2	2				+		max <uil no="" p="" site="bG</td" value,=""></uil>
		T			1	1	1	1	-							-	1	-	1	

Table L

HUMAN HEALTH RISK ASSESSME, OC's: Site 1 - Ponds A1 and A2

(page 2 of 2)

				SITE					BACKGROUND	OND			SCORES			=	HUMAN	COMMENTS
Contaminant	CWGCC STANDARD SAMPLE MEAN	SAMPLE MEAN	MAX DETECT	DETECTION	SAMPLE	PERCENT DETECT	SAMPLE MEAN	LOGNORMAL 95% UT.	MAX	DETECTION	SAMPLE	PERCENT DETECT	TEST P.	NO OF EXCEEDANCES	POTENTIAL	¥ °	HEALTH COC	
OAV SVOAV PESTICIDES	(//Bn)	(/Bn)	(Van)				(/Bn)	(//bn)	(//Bn)									
CETONE	A/A	6.55	15	=	0	0								ο ¯	<u>Q</u>		<u> </u>	1/10 detects
S(2-ETHYLHEXYL)PHTHALATE	8.	22.875	220	-	12	8.33		27.528	N/A	0	16	0	A/N	-	YES		e Q	exc., 1/10 defects, pot. lab con
2,3 TRICHLOROBENZENE	V/N	0.0665	11.0	_	Ξ	60.6								o o	Q.	-	<u> </u>	/11 detects
2,4 TRICHLOROBENZENE	N/A	0.0558	0.12	_	12	8.33					•			0			=	2 defects
ENZENE, 1,2,4-TRIMETHYL	ďχ	0.0564	0.12	_	Ξ	80.0								0	Q		Ξ	1/11 detects
EXACHLOROBUTADIENE	0.45	0.07	0.29	_	12	8.33		-						0	O _N		<u> </u>	/12detects
APHTHALENE	0.0028	0.1483	99.0	_	12	8.33								_	YES		_	exc., 1/10detects
ETRACHLOROETHENE	0.8	0.0792	0.68	2	12	16.67								0	YES		YES 2/1	/12 detects
ACHLOROETHENE	8	0.0817	0.54	2	12	16.67								0	YES			2/12 defects
IS-1,3-DICHLOROPROPENE	01	0.08	0.41	_	12	8.33								0	O _N		<u> </u>	1/12 defects
BUTYLBENZENE	N/A	0.1491	0.64	_	Ξ	00.0								0	Q.	-	<u> </u>	I/11 defects
TRAZINE	3	1.0458	6	01	12	83.33								0	YES		YES 10,	10/12 defects

NOTES:

- 1. Foust, Samuel. 1981, "Chemistry of Natural Waters". Ann Arbor Science.
- 2. Hem, John, USGS. 1989, "Study and Interpretation of the Chemical Characteristics of Natural Water" Water Supply Paper 2254.
- 3. EPA, 1979, "Water-related Environmental Fate of 129 Priority Pollutants. Volume I: Introduction and Technical Background, Metals and Inorganics, Pesticides and PCBs", NTIS/PB80-204373.
 - 4. Fergussen, Jack E. 1989. "The Heavy Elements: Chemistry, Environmental and Health Effects".

HUMAN HEALTH RISK ASSESSMEN

C's: Site 2 - Ponds A3 and A4

`	ର
<u>—</u>	5
₹	ē
ŏ	ĝ
_	9

			SIE						BACKGROUND	OND		ā	SCORES	POTENTIAL	ESSENTIAL	15	LITERATURE VALU		HUMAN	COMMENTS
Contaminant	SAMPLE MEAN	10GNORMAL 95% UCL FOR	MAX DETECT	DETECTION	SAMPLE	PERCENT	SAMPLE MEAN	LOGNORMAL	MAX	DETECTION	SAMPLE	PERCENT	TEST P.	00	NUTRIENT	MIN	MEAN	МАХ	HEALTH	
RADIONICIDES	(PCI)	MEAN	(pCi/l)	TREMOENC!	7	MONDERC	(PCI)	(PCIA)	+-		-	+	100						8	
AMERICIUM-241	0.004		80.0		8		0.004	0.023	0.024		85		0.4836	Æ					2	Insig p value
CESIUM-137	0.068		4		49		0.096	1.158	1.7		92		0.7959	YES					2	-:
PLUTONIUM-239/240	900:0		0.026		38		0.00	0.017	0.04		8		0.2312	Æ					ş	single by column
STRONTIUM-89,90	0.353		8:0		46		0.546	1.893	9.1		29		0.9806	9						
TRITIUM	121.293	_	0001		22		51.452	1403.865	92		S		0.22%	ş						
URANIUM-233,234	1.378		4.58		8		0.458	1.364	2.59		8		10000	YES					YES	
URANIUM-235	0.084		0.284		8		0.04	0.193	0.2		38		1000.0	YES					YES	sig p vortue, site=2*BG
URANIUM-238	1.542		4.6		SS.		0.36	1.3	1.82		25		0.000	YES					YES	sig p volue, site=3*BG
												-								
METALS	(na/l)	(// D ri)	(/ðn)				(/On)	(ng/l)	(//Bn)			-	1			(/ďn)	(V 0 N)	(//Bn)		
	000	0751		-	ć	ğ	700	007 8 07 8		Ę	-		- 007	<u> </u>						
ALUMINUM	320,025	8	3	<u>.</u>	7 6	0'07	095.C94	4404.022	8 3	· ·	2 3	7.07	0.0400	2 :				₹ .		
ANIMONY	12.648		∀/Z	5	17	8 ;	14.23	92.78	70.5	> :	5 7	3. 5	4 / Y	2 !				- :		no defects
ARSENIC	1.276		N		2	86.7	1.781	8.183	2.9	2	\$	38	0.3000	2		-		2	;	
BARIUM	84.324		3 ;	R ·	7 6	4 6	/19:/9	148.87/	g ;	W ,	3 8	16.4	0000	AES		٠.		25.	3	sig p value, site=1,2°85
ВЕРУШИМ	0.626		6:		5	95.2	0.943	4.750	4.	•	à i		Υ :	2		_		8		
CADMIUM	1.589	2.134	∀ Z	0 ;	=======================================	8	1.744	6.426	ď Ž	0	8 !	3	Ϋ́ Z	2	į				:	
CALCIUM	45395	4	29/00	5.	5	6	24924.572	96761.525	74600	28	8 8		0000	SE !	YES		į		2 9	essential nutrient
CESIUM	218.8		8	·O	8	75	247.467	1551.727	8	œ <u>;</u>	22	6	0.014	ž.			0.02		2	sig p value, I elevated of 5/20 detects
CHROMIUM	2.269		8	_	21	95.2	4.234	16.863	18.9	2	-	83.5	0.9747	2		0.73	9	a		
COBALT	2.258		Ψ/X	0	21	001	2.398	9.256	7.9	•	8	93.2	V/Z	2			0.2	5.8		no detects
COPPER	5.045	9.956	17.2	ø	8	2	6,198	28.468	15.5	8 8	8	3.4	0.7333	2		0.83	2	2		
IRON	237.5		8	92	21	23.8	1335.636	6637.829	26300	118.9	&	7.8	0.899	2	SE .	-		-		And the second s
LEAD	2.456	5.385	19.1	∞	8	8	2.044	8.567	5	37	<u>8</u>	8	0.3474	<u>~</u>		6		8 8	2	insig p value, site max & mean=BG
LITHIUM	13.62		15.8	= :	17	35.3	13.711	63.036	9.	47	86	25	0.000	SE		0.075	=	37	2	sig p value, site mean & max = BG
MAGNESIUM	11530		15000	22	2	0	5279.619	11266.249	888	8	8	10.2	0000	ži Ži	Æ					essential nutrient
MANGANESE	53.21		95	~	22	4.5	99.317	488,154	4060	112.1	123	8.9	0.26	2				8	- 1	
MERCURY	0.096	0.153	A/N	0	24	20	0.14	0.638	7.4	6 0	8	91.5	₹ Ž	ş		10.0		<u>.</u>		no detects
MOLYBDENUM	6.597		8:2	e -	71	82.4	5.279	23.37	25.1	12	26	87.6	0.3752	2				6.9		
NCKEL	7.236	_	6,5	r (5 5	76.2	7,384	33.254	12.1	4 (8 9	X	0.2034	2 9			₽	~	-	
POTASSIUM	5435		3000	R -	7 2	0 0	0/6.4//	5432.90	3 6	8	3 8	25 25	0.000	£ £	ž.	ć		8	2	essentia nuttient
SELENTON	1.000	2,440	3,550	n o	7 0	70/	5841 807	7677 637	7 021	4 6	3 00	9	0.000	g g		Š	7.0	8	2	SQ 5 value, 1 elevated of 5/21 detects
SIVE	967		V/V	0	21	8	2,856	11.482	7.9	12	88	86.4	0.9714	ş		0.09		93:0		no defects
SODIUM	17086	42187	22200	21	21	0	17166.929	38052.976	45400	126	127	0.8	0.0001	YES	YES				õ	essential nutrient
STRONTIUM	301.7		98	17	18	5.6	195.594	472.439	408	68	28	2	0.0001	YES		6.3		805		
THALLIUM	1.006		N/A	0	21	8	1.043	3.866	3.4	n	8	6.96	A/N	ş						no detects
NI NI	13.65		23.1	=-	91	93.8	22.609	92.862	8	17	8	61.1	0.9299	Ş						
VANADIUM	3.717		6.1	7	23	7:99	7.836	42.095	18.2	27	8	70.7	0.7535	2						
ZINC	20.33	34.401	2 5	7	21	33.3	38.291	182.699	98	87.9	123	28.5	0.7955	9		ю	2	.8		
INORGANICS	(l/Bn)	(J/Bn)	(ybn)				(/Bn)	(/bn)	(/Bn)											
		,										-							-	
CYANIDE	2.873		90		2	22.3	0.000	0.03	0.0404	e ,	<u>8</u> '	97.2	∢ Z	<u> </u>					2 9	only 1/13 detects
NITRATE	110.7		8 3	4 ;	4	0	0.15	Ψ/Z	0.25	- ;	2 }		0.032	£ ;				æ	2 5	sig p value, only 1 elevated of 4/4 detec
NITRATE/NITRITE	2.942	3.724	2. 6. 7	<u>8</u> 4	2	, c	0.36	1 10	6.4 S	7 6	8 1	46.4	10000	<u> </u>					3 5	so pivotes, sterrings
NIIKIIE	U.12v		4	15	3	12.7	1100	Lana	2000	1,	2	2	2	231					3	אם לי אופיני אופיני הי

Table D (page 2 of 2)

				SITE					BACKGROUND	JND			SCORES				HUMAN	IAN	COMMENTS	
Contaminant	CWOCC STANDARD SAMPLE MEAN	SAMPLE MEAN	MAX DETECT	DETECTION	SAMPLE	FECENT DETECT SAMPLE MEAN	<u> </u>	LOGNORMAL 95% UTL	MAX	DETECTION	SAMPLE PE	PERCENT DETECT	TEST P.	NO OF EXCEEDANCES	POTENTIAL		HEALTH	₹ X		
VOA/ SVOA/ PESTICIDES	(/Bn)	(/Bn)	(/bn)				(/bn)	(/Bn)	(//Bn)											
1,1- DICHLOROETHENE	0.067	2.6098	21	_	132	0.76								-	YES		Ž	NO Only 1/	only 1/32 detects	1
METHYLENE CHLORIDE	4.7	2.9621	80	٥	132	6.82	4.794	17.262	3	14	86	15.7	0.9944	٥	YES	-	Ž		insig p, potential lab cont.	
TETRACHLOROETHENE	0.8	2.621	14	2	132	1.52	~~~							2	YES		Ž	NO only 2/	only 2/132 detects	
BIS(2-ETHYLHEXYL)PHITHALATE	1.8	5.409	61	2	8	90.9	N/A	27.528	Ϋ́	0	92	0	N/A	2	YES		Ž			
1,1,1- TRICHLOROETHANE	200	0.0888	42	_	92	6.25								0	ð		-			
1,1- DICHLORETHENE	0.067	0.1381	71		16	6.25								-	YES		2		only 1/16 detects	
TETRACHLOROETHENE	0.8	90.0	N/A	_	9	6.25						-		0	Q.					
DICAMBA	N/A	0.475	2.1	7	12	58.33								N/A	YES		_		7/12 detects	
DICHLOROPROP	N/A	0.475	60:	_	2	8.33								N/A	YES		Ž	NO only 1/	only 1/12 detects	24
ATRAZINE	8	0.7281	4.6	\$	76	59.21								25	YES		YES		45/76 detects	
SIMAZINE	4	0.1563	0.07	æ	3	12.5								0	YES		Y.	YES 8/64 detects	efects	

HUMAN HEALTH RISK ASSESSMENT

s: Site 3 - Ponds B1 and B2

Table D (page 1 of 2)

						ľ							ŀ	-						
		LOGNORMAL	3116		r				% ⊢	2		_	POTENTIAL	AL ESSENTIAL	<u> </u>	LITERATURE VALUE	E VALUE	Ŧ	HOMAN	COMMENTS
Confaminant	SAMPLE MEAN	PSK UCL FOR	MAX DETECT	PREGUENCY SA	SAMPLE SIZE	NONDETECT	SAMPLE MEAN	LOGNORMAL 99%	DETECT	FREQUENCY SAMPLE SIZE	SIZE NONDETECT	CT VALUE	8	NUTRIENT	Z	Z Z	MEAN	MAX HEA	HEALTH COC	
RADIONUCLIDES	(PCI/J)	(pcl/l)	(hCl/I)				(bCl/l)	(bCl/l)	(pci/l)											
AMERICIUM-241	1200	0.038	0.064		۰		0.004	0.023	0.024		82		0.0002 YES		•				YES	
CESIUM-137	0.371	0.717	5.9		12		960:0	25.	1.7		76	- -							ON P	only 1/12 elevated
PLUTONIUM-239/240	90'0	0.079	0.16		7	ے۔	0.004	0.017	0.04		8	0.0			. . .				YES	
STRONTIUM-89,90	0.179	0.268	0.56		2		0.546	1.893	9.		57	0.9	0.9996 0.9996							
RITUM	249.5	506,453	99		•		51.452	1403.865	25		23	0: 							<u>ه</u>	only 1/6 elevated
JRANIUM-233,234	1,37	1.76	2.4		4		0.458	304	2.59		8 :	0.0								skg p votue, stte=2*8G
JRANIUM-235	0.092	0.126	0.14		2 3		00 6	0.193	0.2		8 3	0.0	0.0003 YES							stg p value, stew2*8G
JKANIUM-436	POY:	04'			2		00.0	2	70.		5	3			-	+	t		Т	SQ D VGUB, SIRBED BG
METALS	(VBn)	(vav)	(/Bn)				(/Bn)	(/Bn)	(/dn)							0/00/0	(Va/)	(va/)		
								-			-					┢	⊢			
TOMINOM	152.6	374.6	220	•	2	S	695.294	4404.622	5840	6/	011	28.2 0.9	0.9388 NO					8		
INTIMONY	10.98	17.81	۷ ۷	6	12	001	14,23	55.28	597	٥	16						_			no defects
RRENIC	2.144	4.813	4	vo.	٥	44.4	1.781	8.183	5.0	01	28					_		2	ON ON	sig p value, site mean in lower range of itt. BG
ARIUM	40.82	240.13	121	60	12	33.3	67.617	148.877	38	8	82	18.4 0.9				۰	_	152		
ERYLUUM	0.379	0.756	9.1	-	12	91.7	0.943	4.756	8.4	•	87					_	_	8	-	
SADMIUM	1.58	2.251	ďχ	0	0	8	1.744	6.426	Ϋ́	0	8	8							2	no defects
SALCIUM	21900	26788	47400	2	2	0	24924.572	96761.525	74600	135				YES	s				*	essential nutrient
SSIUM	233.3	821.5	√X	0	2	8	247.467	1551.727	8	ED.	8								2	no detects
HEOMIUM	1.955	3.028	₹ Ž	0	Ξ	8	4.234	16.863	18.9		6					0.73	2	2	2	no detects
COBALT	1.838	2.836	A/N	0	12	8	2.398	9.256	7.9	9	98							5.8	2	no defects
OPPER	1.888	2.702	ď Ž	0	2	9	6.198	26.468	15.5	34	66					0.83		8	2	no detects
NQ	271.8	452.6	164	60	27	33.3	1335,636	6637.829	26300	118.9	&			YES					<u> </u>	steenthal nutrient
EAD	2.171	81.9	=	3	12	8	2.044	6.567	5		8	-				1.0		8 8	_	nax-UTL haig p value, mean=8G
ITHIOM	19.32	25.25	23.6	0	12	16.7	13.711	63.036	9.		86					2.075	=	37	YES	lg p value, stte=1.5*BG
MAGNESIUM	20142	23293	25600	12	12	0	5279.619	11266.249	0099		<u>e</u>			SE.						assential nutrient
MANGANESE	74.53	114	157	12	27	0	99.317	488.154	900		123						_	00		sig p value, max-UTL mean-86
KERCURY	0)	0.191	A/N	0	2	8	0.14	0.638	4.		94					10,0		01	2	no defects
MOLYBOENUM	3.00%	4.802	V/X	0	27	<u>8</u>	5.279	23.37	25.1		26	0						6.9	2	to defects
ICKEL	4.95	8.855	16.3		2	61.7	7,384	33,254	12.1	7	8	87.8								
OTASSIUM	5366.7	0/19	8140	2	2 :	0 !	7/5.3/5	5432.96	8 (8.	3 1		O.COCO! YES			-			9	essential nutrient
ELENIUM	0.895	1,481	A/A	5 9	= 3	8 2	1.378	5.462	2 22	4 Ç	2 2	·	Q Q				0.2	 8	2	no defects
N.C.	1011	8 4	3 3	2	2 0	7 10	2.856	11.482	2.0	20	5 88		0,43% YES	-		80		0.55	Q	mostill, fred by when poly 1/12 defect
MINGO	62433	69057	81200	12	12	0	17166.929	38052.976	45400	128	127	0.8		YES	s					essential putrient
TRONTIUM	273	306.8	301	=	2	8.3	195.594	472.439	408	68	90					6.3		208	YES 40	sig p volue, max-UTL atteal.5*BG
HALLIUM	0.827	1.158	N/A	0	2	8	1,043	3.866	3,4	n	96	6.96	N/A NO						2	no defects
	12.7	26.51	V/X	0	Ξ	001	22.609	92.862	98	17	8								2	no detects
ANADIUM	2.308	3.53	2.9	-	2	7.19	7.836	42.095	18.2	27	8	70.7	0.9732 NO							
2	6.658	24.09	24.8	7	2	83.3	38.291	182.699	98	87.9	123		ON 666.0			w	2	8		
			6		Ī		9	9	-		1	+		+			+		+	
VORGANICS	(/bn)	(/Bn)	(n/Bn)		\dagger		(/đ/)	(v 6 n)	(vBn)					-					1	
YANDE	0.008	0.013	N/A	6	7	8	9000	1000	0.0404	6	90	97.2	NO NO							
ITRATE	√××××××××××××××××××××××××××××××××××××	N/A	N/A	Ψ/Z	-6	N/A	0.15	A/N	0.25		2		N/A N/A					-8		
IRATE/NITRITE	7200	0.167	0.28	-21	7	85.7	0.389	3.111	4.3	72	126	42.4 0.9							_	
ITRITE	910'0	0.035	0.084	2	4	85.7	0.012	0.054	0.058		75	-	0.0488 NO	-	\dashv	-	-		1	

Table D

				SITE					BACKGROUND	UND			SCORES			HUMAN		COMMENTS
Contaminant	CWINCE STANDARD SAMPLE MEAN	SAMPLE MEAN	MAX DETECT	DETECTION	SAMPLE SIZE	SAMPLE SIZE PERCENT DETECT SAMPLE MEAN	SAMPLE MEAN	LOGNORMAL 95X	MAX	DETECTION	SAMPLE SIZE P	SAMPLE SIZE PERCENT DETECT	TEST P.	NO OF EXCEEDANCES	POTEMIAL COC	нелін сос		
VOAJ SVOAJ PESTICIDES	(/Bn)	(/Bn)	(/Bn)				(/Bn)	(/bn)	(/Bn)									
1.2 DICHLOROETHENE	A/N	2,906	•		16	6.25								0	Q.			
ACETONE	A/X	37.038	240	4	13	30.77								0	YES	YES	4/13 detects	
METHYL CHLORIDE	4.7	4.875	Ξ	7	92	12.5	4.794	17.262	3	4	80	15.7	0.994	2	SJA	2		2 exceedances, insig p value, site=pG (pot. lab contain
TRICHLOROETHENE	*	4.375	Ξ	S	91	31,26							•	0	, KES	YES	5/16 detects	=.
cis - 1,2 - DICHLOROETHENE	70	3.3		_	-	8							-	0	 Q	YES	only 1/1 detects	
1,24 - TRICHLOROBENZENE	V/N	0.0567	0.13	-	12	8.33								0	ð			
CARBON TETRACHLORIDE	18	0.3063	1,5	2	12	16.67								0	VES	YES	2/12 defects	
CHLOROFORM	9	0.2158	0.72	7	12	58.33								0	YES	YES		
NAPHTHALENE	0,0028	0.12	0.34	_	12	8.33			_					-	YES	Q.	1/12 defects	
TETRACHLOROETHENE	0.8	0.2133	0.87	7	12	58.33								_	YES	YES	7/12 defects	
TOLUENE	1000	0.133	0.5	_	12	8.33								0	Q.			
TRICHLOROETHENE	*	3.0775	2	•	12	S								0	VES	YES	6/12 detects	
VINYL CHLORIDE	2	0.1783	0.94	8	12	16.67					-			0	YES	YES	2/12 defects	
cts - 1,2 - DICHLOROETHENE	70	0.75	3.4	4	Ξ	36.36								0	YES	YES	4/7 defects	
ATRAZINE	3	0.3033	0.85	-	12	8.33								0	Q.	0X	1/12 defects	

CC's: Site 4 - Pond B3

			SITE						BACKGROUND			SCORES	L	POTENTIAL ESS	ESSENITAL	INFRANCE VALLE	× value	EH.	NAN	COMMENTS	
		LOGNORMAL	\vdash	DEFECTION	SAMPLE	PERCENT		LOGNORMAL	<u> </u>	ECHON	-	Ţ				1	.L	Т			
Contaminant	SAMPLE MEAN	95% UCL FOR	MAX DETECT	FREQUENCY	375	NONDETECT	SAMPLE MEAN	70 %56	DETECT FRE	FREGUENCY SIZ	SIZE NONDETECT	FIECT VALUE		¥ 00 	MUTRIENT	Y Y	MEAN		8		
RADIONUCLIDES	(bCl/l)	(hCl/l)	(I)C(I))				(DCI/I)	(bCl/l)	(t)C(I/I)							H	$\left \cdot \right $				
AMERICIUM-241	720.0	0.07	0.062		- CD		00:00	0.023	0.024		82	0.00		S				<u>~</u>	YES sign value		
CESIUM-137	0.211	1.141	1.15	-	· co		960.0	1.158	1.7		76	0.5624		O _N				·			
PLUTONIUM-239/240	0.018	0.038	0.0		vo.		0.00	0.017	0.0		28	(000)		ES	-			_	YES sign value	alg pivalue, site=4*8G	
STRONTIUM-89,90	0.16	0.319	0.3		v) (-	0.546	1.893	60		22	9166:0		Q '			·				
TRITION	51.5	1166.87	9 8		α		51.452	1409,866	99 5		8 9	0.473)									· .
URANIUM 233,234	0.20	2 6	0.93		0		0.458	05. 01. 01.	6.50		8 2	20.80						-	-		:
URANIUM-236	0.027	0.0	1000		.		000	0.0	0.2		8 3	χ ` Ξ									
URANIUM-238	0.288	0.60/	0.63		•		90.30	1.3	1.82	-	2		Ž 0.0	0		-					
METALS	(//Bn)	(/Bn)	(yBn)				(/Bn)	(//bn)	(/dn)			-	-	-	-	n) (/an)	(/bn) (/bn)	(VL			
																	┼			-	
ALUMINUM	526.6	2364	8	\$	S	0	*6	4404.622	5840	٤	011	28.2 0.1319		<u> </u>	•						-
ANTIMONY	11.84	31.13	A/X	0	S	8		92.58	56.5	٥	5	90.3		<u>.</u>							
ARSENIC	0.975	13.10	¥/¥	O	4	8		B.183	5.9	0	28		_	o O		_	_		no detects	#	
BARIUM	16.49	54.93	8	4	40	8	~	148.877	ĝ	28	80			<u></u>		۰.	=	25			-
BERYLLIUM	. 0.37	0.725	A/X	0	ς.	8		4.756	9.4	•	87						==	<u>چ</u>	no detects	# P	
САБМІЦМ	1.867	9.33	A/A	0	6	8		6.426	Α, A	0	æ	100 N/A		Q.					no detects	4 :	
CALCIUM	33940	40134	4000	vs.	νo		24924.572	96761.525	74600	125	125	_			YES			_	NO essential nutrient	nutrient	
CESIUM	391	4196	S	_	S			1551.727	400	œ	8			9			0.02				
CHROMIUM	3.17	9.352	6.4	-	ď			16.863	9.0	3	5				_	67.0		3			
COBALT	2.07	4.748	<u>.</u> .	- (v,			9.256	7.9	~ ;	æ (93.2 0.6807		Q !				8.6	1		7
COPPER	4.713	19.944	2 2	N C	4 4		961.0	78.400	5.5	<i>x</i> 5	3 5				<u>-</u>	23		 g		•	
NO.	130.2	472.70	7 7	7 3	o w			667	200	<u> </u>	\$ 5	•					-			nument	-
LEAD	3.72	173.7	0 2	0 6	n vo	2 8	13.711	V3 034	7 7	6 5	3 8	3.00		2 ×2		- 200	* * 	2 Z	and of the CN	ag pivodas, o/a defects, sire medans within lower range of state of contracts.	er ronge or m.
MAGNESIUM	900	7619	8100	· ·	1 10		•,	11266.249	16600	- 26	118	10.2 0.0106			YES	-				nutrient	
MANGANESE	43.36	10.79	3	9	- vo			488.154	4060	22	123			·· ••			ğ				
MERCURY	0.1	0.315	A/A	0	· v			0.638	4.	00	20					10:0	. 		no detects	1.3. 大学 1.5 美国	
MOLYBDENUM	4.88	17.22	A/A	0	S	801		23.37	26.1	2	26	87.6 0.7518		<u>Q</u>			4 0	6.9	no detects	#	
NICKEL	6.35	15.76	9.2	_	w)			33.254	12.1	7	8						7 01				į.
POTASSIUM	13404	17824	16000	vo.	w)	0	17.	5432.96	6700	99	8				YES	-			NO essential nutrient	nutrilent	1
SELENIUM	1.14	5.392	ď Ž	0	w			5.462	N	4	8	95.7 N/A		9		 	0.2	_ _	no detects	7.	381 No.
SICON	4413	4874	0.00	•	0		eg C	19227.637	8 :	8 3	8			<u> </u>							1
SILVER	30300	36,667	W 65		o v	3 0		3805.076	45400	3. 5	22 8	0.034		5 %	VEX.	S)	-	- Z	To delects	in the state of th	
STRONTILM	169.6	210.23	82	*6	, ro	6	105.594	472.439	8	- 86	: <u>%</u>			:	 !	6.3	. ×	- N	NO stg p votue	to produe, meanabG	
THATLIUM	1.14	2.800	Ϋ́Z	0	w			3.866	3.4	б	8			<u>o</u>						#:	
	10.19	22.566	X X	0	¥Ω			92.862	280	11	8	0		Q					no detects		
VANADIUM	5.7	18.87	4.7	6	LO	8	7.836	42.095	18.2	27	8	7.07		YES					NO slightly sig	slightly sig p value, means BG	
ZINC	45.9	62.03	90.09	4	I)	8	38.291	182.699	480	88	123	28.5 0.0302		<u></u>		ıç.	01		-	slightly sig p value, max<86, site=86	
			1								-	+	+	-	+		+	+			
NORGANICS	(/đn)	(/Bn)	(/Bn/)				(/Bn)	(/ 6 n)	(/Bn)	+	+	-		-	+	+	+	+			
CYANIDE	0.00%	0.013	Ϋ́	0	₹0	8	9000	0.031	0.0404	· 67	8			<u></u>			· m·J.		no detect	\$	
NITRATE	N/A	₹ Z	A/A	0	0	0	0.15	A/X	0.26		~					-	тО		-		
NITRATE/NITRITE	7.32	65.381	9 ;	9	w ·	0	0.389	3.111	6.4.3	22 0	128	42.4 0.0001		Q 9							
NITRITE	0.636	987	4	9	4		2100	0000	9900	7	2			c		+	+	-	TES SIG DIVINE	ag p value, site = 50 ° BG	
IOIAL										-		-				-		-	-		

Table, (page 2 of 2)

_		Τ-			-										-			-
							£-											
COMMENTS					undur.													
8					nsig p value, potential lab contam.													
					alue, poter							cts	cts	cts	g	sto		
L					y d Byu						-	3/5 detects	2/5 detects	5/5 detects	3/5 detects	4/5 detects		
HUMAN	HEALTH				2							YES	YES	YES	YES	YES		
						•			.									_
																	-	
	POTENTIAL		0	õ	YES	Q	Ş	Q	ð	Q.	Ş	YES	YES	YES	YES	YES	õ	:
	NO OF EXCEEDANCES		0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	
SCORES	TEST P- VALUE				0.4845													
	PERCENT DETECT				15.7													
	SAMPLE				80													
ONIN	DETECTION		٠		4													
BACKGROUND	MAX	(//Bn)			33													
	LOGNORMAL 95% UTL	(/bn)			17.262			-								•		
	SAMPLE MEAN	(//Bn)			4.794													
	PERCENT DETECT SAMPLE		16.7	16.7	19.7	16.7	16.7	16.7	16.7	16.7	16.7	8	4	100	8	8	92	- 8
	SAMPLE		•	•	•	•	•	٥	•	•	•	u)	ŵ	40	S	S	4	₹
SITE	DETECTION			_	_	-	_	_	_	-		n		\$	e,	4		_
	MAX DETECT	(/Bn)	25	· Co	60	0.	0	0	0	0.16	0.17	0.14	0.3	3.4	0.0	0.16	0.17	-
	SAMPLE MEAN	(/bn)	8.167	· e	3.667	۷ /۶	K/X	₹/ ≯	X/X	0.0219	0.2192	0.092	21.0	2.0	0.0	0.078	0.08	0
	CWGCC STANDARD SAMPLE MEAN	(//Bn)	Ϋ́N		4.7	0.00021 N/A	0.0039	N/A N/A	0.014	0.019	ď Ž	75	0.3	۰	8:0	8	8	
	Contaminant	A/ SVOA/ PESTICIDES	ETONE	LOROFORM	THYLENE CHLONIDE	TACHLOR	ha - BHC	ha - CHLORDANE	a · BHC	mma - BHC (LINDANE)	mma-CHLORDANE	- DICHLOROBENZENE	OMODICHLOROMETHANE	LOROFORM	RACHLOROETHENE	CHLOROETHENE	1,2 - DICHLOROETHENE	

			SITE						BACKGROUND	QN			SCORES	POTENITAL	ESSENTIAL	UTER	LITERATURE VALUE		HUMAN	COMMENTS
Confaminant	SAMPLE MEAN	LOGNORMAL 95%	MAX DETECT	DETECTION	SAMPLE SIZE	PERCENT	SAMPLE MEAN	LOGNORMAL 95%	MAX	TECTION	SAMPLE SIZE	PERCENT	TEST P.	8	NUTRIENT	M	MEAN	¥	HEALTH	
RADIONUCLIDES	(hCl/l)	(pci/i)	(pCl/l)	i de la composición dela composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición de la composición del composición del composición dela c		CADERC	(bCl/l)	E				-+-	VALUE						8	
AMEDICIIIM.243	,000	3100	7600		86		7000	6000	7600		Ca		26700	ğ					Ç	Of other parties and III second
CESIUM-137	760'0		0.79		32		960'0	1.158	1.7		2		0.5349	9 9					2	
PLUTONIUM-239/240	6000		0.045		88		0.004	0.017	0.04		83		0.0006	YES					YES	sig p value, site
STRONTIUM-89,90	0.26		0.75		8		0.546	1.893	87		22		0.9997	9						
TRITIUM	197.83	≈	1200		8		51.452	1403.865	933		ß		0.0165	YES				-	YES	sig p volue, site4*BG
URANIUM 233,234	0.906		3.86		38		0.458	1.364	2.59	-	8		0.0001	YĘS					YES	sig p volue, alte=2*BG
URANIUM-235	0.066		0.29		x		0.0	0.193	0.2		38	-	0.1394	YES	-				2	max>UTL Insig p value, site=BG
URANIUM-238	0.774	0.897	2.98		35		0.36	£	1.82		Z		10000	YES					YES	sig p value, site =2*BG
METALS	(//bn)	(//Bn)	(/ďn)		-		(/Bn)	(//Bn)	(/Bn)							(ng/)	(//Bn)	(ng/)		
ALUMINUM	336.8	1136	1580	2	54	20.8	695,294	4404.622	2840	2	01.	28.2	0.5283	9				08		
ANIIMONY	12.04		¥/Z	0	52	50	14.23	55.28	26.5		6	8.	₹ Ż	2				-		no defects
ARSENIC	1.362		2.7	4	54	83.3	1.781	8.183	2.9	2	æ	88	0.1905	Q		_		0		
BARIUM	65.13		04.7	22	24	8.3	67.617	148.877	306	28	8	18.4	0.0162	YES		۰		152	2	sig p value, mean=BG
BERYLLIUM	0.564		-	_	52	8	0.943	4.756	8,4	9	87	93.1	√/N	ş		-		8		-
CADMIUM	3.68		Υ/X	0	23	8	1.744	6.426	∢ Ž	0	8	8	ď Ž	9						no defects
CALCIUM	42540	45462	62800	52	5 32	0	24924.572	96761.525	74600	125	23. 25	0 6	0.0001	SE SE	SJ.		8	-	2	essential nutrient
CESION	200.3	·	3 3	9 0	Ş ¥	ğ Ş	797.40/	/7/1001	9	0 4	7 6	. s	0.1122	2 9		Ę	20.00	-		
COBAIT	2,045		43	5 6	3 %	3 8	2.30B	9.256	2.0	2 40	. 8	3 8	N/A	2 2		3	2 2	4 S		no derects
COPPER	6.412	w	12.7	12	83	25	6.198	28.468	15.5	8	8	83.4	0.252	ş		0.83	2	92		
RON	261.4		16/	17	52	32	1335.636	6637.829	26300	119	8	7.8	0.9998	õ	YES				Q	essential nutrient
EAD	2.043		•	ō	82	56.5	2.044	8.567	21	37	2	44	0.2861	2		0.1		8		
LITHIUM	14.36		36.9	14	22	36.4	13.711	63.036	11.6	47	86	25	0.0001	YES		0.075	Ξ	37	YES	sig p value, site detects=2" BG
MAGNESIUM	9104		16700	58	R	0	5279.619	11266.249	16600	8	118	10.2	0,0001	ÆS	ÆS				2	essential nutrient
MANGANESE	89.52		522	22	52	12	99.317	488.154	4060	112	123	¢.	0.0088	YES				8	2	sig p value, site mean & max = BG
MERCURY	0.121	0.195	0,7	_	% :	36.2	0.14	0.638	1,4	6 0	8	91.5	∢ Z	2		0.01		2		
MOLYBDENUM	7.967		2 3	2 0	8 8	8	5.279	23.37	8 9	2 ;	6 8	9.78	0.2219	2 9			,	6.9		
NICKEL	5.912	9.05 6.05	9.2	2 70	9 8	7	7.384	33.254	6770	4 8	¥ §	8. C	0.7616	S &	, L		2	=	2	1000000
SEIENIN	1,64		47	, v	3 18	' &	1.378	5.462	3 8	3 4	8	95.7	0000	S S	3	[.0	0.2	- 8	2	essential fluident alono volue, alte detecte BG detec
ILICON	4122.5	7	4910	80	60	0	5861.897	19227.637	11700	36	36	0	0.9467	Q	_					
SILVER	2,152		3	2	24	61.7	2.856	11.482	7.9	12	88	86.4	0.8581	2		60:0		0.55		
SODIUM	33988		91200	52	52	0	17166.929	38052.976	45400	126	127	0.8	0.000	YES	YES				2	essential nutrient
STRONTIUM	265		396	8	8	5	195.594	472.439	8	66	ő	9	0,000	YES		6.3		803	X3.	alg p value, site = 1.3*8G
HALLIUM	0.961		2.3	-	52	8	1.043	3.866	9.6	6	8	6.96	ď Ž	9						
<u> </u>	12,364	_	1.5	- (ន	5.5	22.609	92.862	<u>8</u> ;	11	8 8	61.1	0.9814	2 :			_			
VANADIUM	4.376	_	9.2	о	8	3	7.836	42.095	18.2	2/	25	70.7	0.4487	0						
ZINC	35.324	52.871	87.7	<u>82</u>	×S	88	38.291	182.699	480	8	123	28.5	900	NES.		so.	2	2 4	<u>Q</u>	kg p value, mean< 8G
NORGANICS	(J/Bn)	(//Bn)	(/bn)				(/Bn)	(/Bn)	(//Bn)											
				4		,	ě		- 000	•	Ž	ē	5	ţ					Ş	
CYANIDE	600.0	^	3 6	0 6	<u> </u>	8	0,00	1000	20.00	· -	<u>§</u> '	7 9	7,000	2 5			-	S	3 5	ag p value, are = 1000 big
NIIKAIE	2.76/		2.5	າ ຄ	2	<u>ې</u> د	0 0	2 :	0.23	- 2	7 4	8 5	0.00	2 5				3	2 5	ag p value, site = 10 bc
NITRALE/NISKILE	3.359	4.9/5	9.4	2 2	3 2	3.2	0.00	3.11	0.058	7 6	8 12	97.4	1000	S S					<u> </u>	ad p volue, are = 10*BG
MIKIE	C.407		1,.,	5	5	5	1410.0	15000	2000	5	2	52.	0.000	31	-		1		2	AG D VOICES, MIN MAD DO

				SITE					BACKGROUND	QND			SCORES				HUMAN	COMMENTS
Contaminant	CWGCC STANDARD SAMPLE MEAN	SAMPLE MEAN	MAX DETECT	DETECTION S	SAMPLE SIZE	SAMPLE SIZE PERCENT DETECT	SAMPLE MEAN	LOGNORMAL 95% UTL	MAX	DETECTION S.	SAMPLE SIZE PERCENT DETECT	ICENT DETECT	TEST P. VALUE	NO OF EXCEEDANCES	POTENTIAL COC		EALTH COC	
VOA/ SVOA/ PESTICIDES	(/ßn)	(/bn)	(//dn)				(yan)	(/ˈðn)	(//Bn)									
ACETONE	N/A	15.36	8	12	8	01								N/A	£3,		YES	12/120 detects
METHYLENE CHLORIDE	4.7	2.797	11	7	121	5.79	4.794	17.262	31	14	68	15.7	0.9961	7	YES		ş	insig p value, pot. lab contaminar
TETRACHLOROETHENE	0.8	2.6	=	7	12)	1.66		,						- 6	YES		2	only 2/121 detachs
BIS (2 - ETHYLHEXYL) PHTHALATE	1.8	6.316	8	e	31	89.6	32	6.183	N/A	0	92	0	ΑX	ဗ	VES		YES	3/31 defects
alpha - BHC	0.0039	0.0238	-	_	18	5.56			•					0	Q.	-		icto reported 1/18 detect at 0 ug/1
alpha - CHLORDANE	A/N	0.2238	0	-	80	12.5								A/A	ON			lab reported 1/18 detect at 0 ug/l
Defa - BHC	0.014	0.0268	0.061	-	18	6.56								-	YES	-		only 1/18 detects
gamma - BHC (LINDANE)	0.019	0.0238	0	_	18	5.56								0	Ş.			lab reported 1/18 detect at 0 ug/
gamma - CHLORDANE	A/N	0.2238	0	-	80	12.5								V/A	ð			lab reported 1/18 detect at 0 ug/l
CHLOROFORM	9	0.7428	2.4	18	&	62.07								0	YES		YES	18/24 detects
TETRACHLOROETHENE	0.8	0.1339	0.76		78	52								0	YES		YES	7/28 defects
TRICHLOROETHENE	8	0.3831	2.1	60	8	27.59							-	0	YES		YES	8/29 detects
DICAMBA	₹/Z	0.2195	0.48	67	23	13.64								N/A	YES		YES	3/22 defects
ATRAZINE	6	0.556	3.83	181	21	83.52		_						-	YES		YES	18/21 detects
SIMAZINE	4	0.1461	1.3	12	90	15								0	YES		YES	12/80 detects

HUMAN HEALTH RISK ASSESSML ,OC's: Site 6 - Ponds C1

ó Table L (page 1of 2)

10 10 10 10 10 10 10 10				SITE					BACKGROUND	DNUC		S	SCOPES	POTENTIAL	ESSENTIAL	STEPATIOS VALLE	200	HIMAN	COMMENTE
Maria Continue C	Confaminant		LOGNORMAL 95% UCL FOR							ECTION			H P.	8	VUTBIENT	2	MAX	HEALTH	
March Color Colo	RADIONUCLIDES	(PCM)	(bCi/l)	(bCl/l)			(pCl/l)	H	(pCI/I)				+		T				
Marco 1,000 1,00	AMERICIUM-241	90000	0.034	0.023		4	о ——				82		1,2599	ð					
MASSACA 1,000 1,	CESIUM-137	0.261	1.685	0.92		٠ د) 				76	_	3.2398	ð					
Mathematical Math	PLUTONIUM-239/240	0000	1100	0.014		٠.	ŏ				8	_	0.0266	YES				YES	sig p volue, site=1,5 8G
No. Color	TRITIUM	187.5	1048.258	3 8			, r			-	<u>ک</u> ک	_	7997	<u> </u>					
Marked Color Col	URANIUM-233,234	0.796	1.214	=		. 0	- 70				3 8		1,0062	2 %				XES	Casa Losts colored as
Marie Carol Caro	URANIUM-235	0.07	0.000	0.098	_	9	· 0				38		1,0341	YES		_		YES	SECTION SECTIO
No.	URANIUM-238	0.599	0060	0.88		•	ō				23		0.014	YES				YES	sig p value, site=1.2°8G
Mar.					1			+			+	-			1				
	METALS	(/bn)	(//Bn)	(/Bn)			(/Bn)	+	(/a/)		-		+		1	(/Bn)	(ng/l)		
No. Control	ALUMINUM	531.2	1450.7	1040	ı,	-\$				97	01.0		0879	2					
1 12 13 13 14 15 15 15 15 15 15 15	ANTIMONY	15.72	68.24	32.2	_	-cs				٥	5		10131	YES				9	sig p value, only 1/5 detects, site=8G
1 1 1 1 1 1 1 1 1 1	ARSENIC	0.96	3.644	0.0	_	9				0.	2		1,7183	ð	_	_	0		
Maria Mari	BARIUM	91.32	121.9	82	9	3				28	2		60000	YES				YES	sig p volue, site ≠1,3°BG
Mail	BERYLLKUM	9.0	1.491	1.2	8	2				•	87		30800	2		_			
Mail	CADMIUM	1.825	. 57. 28.	Υ/X	0	5				0	8		₹ X	Q				ċ	no defacts
Mail	CALCIUM	44420	20077	48500	v,	uo i	. •	σ×	~	125	128	0	9000	YES	YES			õ	essential nutrient
1.5 2.1 1.5 2.1 1.4 1.5 2.1 1.5 2.1	CESUM	3 5	4196	8 5	= -			==		ω,	8 8		0.543	2					
1.25 1.25	CHACIMICIA	80. 10	- in i	4	5 0					5 .	5 5		1.8618	9					no defects
Control Cont	COBRE	7775	4404	₹ ₹	5 ° E					0 7	8 8		¥ 8	9 9					
Color Colo	NO	906.8	1343	1230	- 10			•	0	3 2	2 8		1075	2 9	Š,			2	
Hart Coop	LEAD	2.96	7,931	5.4	10	- vs				33	<u> </u>		10154	YES S	2	- [-	8	2	Son Yolke due to pondetect in BG with row detection
Mail	ПТНІОМ	5.4	8,034	8.3	4	· O				47	86		1,0646	Ş				,	
13.6 3.1 3.5 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2	MAGNESIUM	9039	10033	10100	·s	2	35	=		20	118		10001	YES	YES			Q	essential nutrient
Main	MANGANESE	136.5	361.9	240	vo.		8.			112	123		99001	YES		-	0001	õ	
Mail 1554 2002a 2300	MERCURY	0.1	0.315	Z/A	0					80	इ		₹ Z	2					
1.24 1.24 1.04	MOLYBDENUM	3.59	10.526	9.9	= 7					12	6		1.4547	2					
1.34 4.05	NCAEL POTA SCILLA	3.62	10.04	2300	5 6					4 5	3 5		3.8526	9 9	ļ				
CASIS 82204 PARTINISATION	SEENIN	1.33	4.497	15	, 					8 4	3 8		7.5959 10403	2 ¥	<u> </u>			2 2	Q
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	SILCON	6815	8229	8950	~		88			36	98		11677	2 2				2	Cary 1/2 Cellects, Heddi A be
March 2292 26428 26400 5 5 0 17166/329 38626.97b 45400 126 1	SILVER	2.38	20979	AW	<u>a</u>					12	8		1,7349	2					
Mathematical Notation Math	MUICO	22920	26428	26400	32	ro.	1			126	127		69101	YES	YES			õ	essential nutrient
1.14 2.897 N/A 0 5 100 1.043 3.864 3.4 3 96 965 NA NO NO delects NO delects	STRONTIUM	241.8	260.4	98	r\$	·s	Ξ.			66	8	_	10001	YES		_	_	YES	sig p value, site=1.2*BG
M 2526 2269 N/A 6 0 5 100 22.609 1 7 80 81 10 10 10 10 10 10 10 10 10 10 10 10 10	IHALLIUM	1.14	2.899	V Z	0 1	י מי				e0	8		A/N	2					no defects
1	N.	9.25	7 473	Z C	o -	w .				2 6	8 8		0.916	9 !					no detects
Compact Comp	VANADIOIN	777	7.47.3) v	- (n .	•			> 8	\$ 5		7444	<u>Q</u> :					
Cug/h Cug/	CINC	7.00	/70'0	ž	5	ō.				8	3		9986	<u></u>					
0,007 0,016 N/A	INORGANICS	(//Bn)	(/bn)	(/Bn)			(ybn)	(l/Bn)	(/Bn)										
NA	CYANIDE	2000	9100	Y.						<u></u>			Ą	2		,			of defects
EMITRITE 0.006 0.119 N/A 0 7 100 0.389 3.111 4.3 72 126 42.4 0.9993 NO 1 0.006 0.007 0.006 0.008 3 75 99 N/A NO 1 0.007	NITRATE	A/X	V/X	A/A	0					_	- 7		Ž	Ψ/N		-			no sample data
0.01 0.024 N/A 0 7 100 0.012 0.064 3 75 % N/A NO	NITRATE/NITRITE	90'0	0.119	A/A	0	7		•,		72	128		:9993	Q.					no defects
	NIRITE	10:0	0.024	N/A	0	7				8	75	8	A/A	2					no defects

HUMAN HEALTH RISK ASSESSM_L COC's: Site 6 - Ponds C1

Table (page 2 of 2)

				SITE				BACKGROUND	UND			SCORES		-	ž	HUMAN COMMENTS	E
4				DETICTION		2	SCHORMAL 95%	MAX	DETECTION			TEST P.	10 OH		 <u></u>	- E	
Condiment	CHACL STANDARD	SAMPLE MEAN	MAX DEIEC	PREQUENCY	PAMPLE SIGE PE	AMPLE MEAR	UTL DETECT FREQUENCY	DETECT	FREQUENCY	AMPLE SIZE	RCENT DETECT	VALUE	TA SAMPLE SIZE PERCENT DETECT VALUE EXCEEDANCES POT	POTENTIAL COC	—	88	
VOA/ SVOA/ PESTICIDES	(I/Bn)	(J/Bn)	(//Bn)			(/bn)	(/Bn)	(/On)		-							
9					_	 	-			_		_					

IT COC's: Site 7 - Pond C2

HUMAN HEALTH RISK ASSES.

Table (page 1 of 2)

Continuity Con				SITE					BACKGROUND	ROUND			SCORES	POTENTIAL	ESSENTIAL		LITERATURE VALUE		HIMAN	COMMENTS
Cutoff C	i	一	LOGNORMAL	⊢	_	L-	├-		L.	ECHON	ــــ	PERCENT	TEST P.			i i			HEALTH	
Marked GOOD	aminani		MEAN MEAN		$\overline{}$		\dashv		DETECT			NONDETECT	VALUE	202	NUTRIENT	I I	MEAN	MAX	8	
March Court Cour	DIONUCLIDES	(bCl/l)	(bCl/s)	(bCl/l)		-	(PCI/I)	+	+											
Marco Compacino Compacin	ERCIUM-241	0.012	0.018	0.082		2	<u>б</u>				82		0.0736	YES					2	mack/III, insig p value, mean <bg< td=""></bg<>
Mark 2017-200 Greek Gree	3UM-137	0.094	0.172	15.0		92	ø				76		0.4074	ð						
March Marc	JTONIUM-239/240	0.022	0,020	0.13		32	0				8		0000	YES					YES	alg p value, afte = 5 * BG
MATASS 1311	ONTIUM-89,90	0.452	0.51	0.84		72	° ;				25		0.7065	2						
Head	NO.	62.109	142.63	S <	,	R :					3 5		0.3507	<u>Q</u>					2	
150 150	ANIUM-235	0.128	0.186	79'0	-	5 %					: 38		0000	. X					. X	age versa are - 5 sc
Correction Cor	ANIUM-238	1.514	1.849	40.4		27			_		স		0000	YES					XES .	
1 1 2 2 2 2 2 2 2 2																				
175 1845 1845 1846 1	TALS	(/ðn)	(ng/l)	(/a/)	-		(VBn)		\dashv							(vbn)	(//Bn)	(vg/)		
1,2,4 1,2,5 1,7,5 1,7,5 1,7,5 1,4,5 1	NINK	136.7	30	3							=	28.2	0.0267	9			_	Ş		-
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ANCIMI	12.30	17.75	¥,	. 0		_				5	ร์	4 Z	2 9				3 -		+1000
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	ENIC	2,436	3.859	6.4	7						28	98	1000	, see		-		- 5	2	Schilly elevated within BC literature way
1,000 1,00	RIUM	83.86	92.25	202	22		•	- 2			8	18.4	0.0001	YES		٥		152	YES	slap value, atte = 1,2 * BG
1, 170 2,461 1, 170 1,	YLLIUM	0.595	1.00.E	9:0	-						69	93.1	N/A	Ş		-		82	!	
Mark	MUIMO	1.702	2,451	2.0	_						98	100	Ϋ́	Ş						
1984 561 1100 4 22 24746 1551721 420 15 15 15 15 15 15 15 1	CIUM	46259	51047	109000	æ		_				125	0	0.0001	YES	YES				Ş	essential nutrient
Mathematical Color Mathema	IUM	198.4	58	8	4						8	91.3	0.0613	9			0.02			
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	SOMIUM	2.400	3.567	A/A	0						5	60.5	0.9766	2		0.73	2	æ		no detects
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	BALT	2.788	4.291	A/X	0						88	93.2	Ϋ́N	2			0.2	5.8		no detects
1.50 cs	PPER	4.184	7.33)	11.6	•						8	63.4	0.8686	ð		0.83	٩	55		
13.5% 11.0% 12.5% 11.0% 12.5	z	272.045	728.3	1140	<u>8</u>				··		<u>&</u>	7.8	0.9993	2	YES				9	essential nutrient
13.56 17.85 13.6 17.85 13.6 11.8 33.9 13.71 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.2 13.		5.506	<u>8</u>	5	_						<u>Ş</u>	3	0.3823	YES		 		8	2	only 1 defect elevated out of 7/22 defec
Column	#CM	13.56	17.85	13.6	= 8						8	25	000	YES	į	0.075	Ξ	37	8	sig p value, mean=BG
Color Colo	OF STATES	25	00701	000/	3 9			=			2 5	10.2	10000	Æ.	YES			;	2 9	essential nutrient
Main	NGANESE COLOR	241.4	8 2	300	<u>> </u>						3 8	÷ 5	0.00	S S		5		8 9	2	sig p value, well below literature value
A	VADENIM	0 203	18.81	5 5	,						\$ 6	478	1000	2 %		9		2 5	9	The second secon
March Case Goya 11700 21 22 445 1775,375 543.2% 6700 68 100 32	(FL	6.277	10.62	3 ~	4 64			••,			8	9 80	0.6725	2 2			Q	, r	2	massic insQ by varie
March 186 2885 102 4 22 818 1.378 5.462 2 4 92 957	ASSIUM	9799	\$6669	11700	21		-12	ω,			8	32	0.0001	YES	YES				2	essential nutrient
910 N/A 910 1 1 2 2 866 877 1972 1370 39 39 39 30	ENIUM	1.85	2.885	10.2	4						8	96.7	0.0007	YES		6	0.2	. 8	YES	sig p value, site = 1.3 * BG
1,142 2,022 2,945 3.1 1 2.2 96.5 2,865 11,482 7.9 12 88 86.4 1,144 2,945 3,845 5,1000 2.2 2 0 17,16,579 3,905,270 4,540 12 12 88 86.4 1,244 2,945 1,913 1,144 1,14	NO.	910	A/A	016			38	6			ô	0	0.9544	2						
M		2:027	2.965	3.1	=						8	86.4	0.9314	ş		000		0.65		
JM 3315 355.6 400 18 20 10 195.64 472.459 408 10 16 4 12.15 1.913 N/A 0 22 100 1.043 3.864 3.4 3 99 10 16 A 3.309 1.813 N/A 0 22 100 1.043 3.864 3.4 3 99 10 A 3.309 88.5 5.0 4 22 81.8 7.2609 22.009 11 22 81.8 7.2609 22.009 11 22 90 91.1 10.7 70.7 10.7	MUM	48968	52875	91000	22		-	*			127	0.8	0000	YES	YES				Š	essential nutrient
12.15 18.34 N/A 0 22 100 10.43 3.866 3.4 3.4 3.5 9.6 9.60	MUILINO	331.5	355.6	9	<u>80</u>		_				20	2	0000	YES		6.3		803	YES	sig p volue, site = 1.7 *BG
12.15 18.34 N/A 0 18 100 22.659 92.862 180 17 90 81.1 40.359 4.945 6 4 22 81.8 7.886 42.096 18.2 27 70.7 51.75 10.55 N/A 310 3 3 0 0.15 N/A 0.26 11 2 50 51.75 10.54 0.327 31 18 64 71.9 0.399 3.111 4.3 72 135 42.4	FLUM	0.925	1.913	₹/X	0						8	6.9	ď Z	Q 2						no defects
A 3.309 4.945 6 4 22 81.8 7.836 42.095 18.2 27) 92 70.7 CS (Jug/h) (J	_	12.15	18.38	₹ Ž	0						8	1.18	0.9769	2						no defects
CS (14g/h) (14	ADIUM	3.309	4.945	•	4						8	70.7	0.9707	g 2						
CS (U.G/M) (U.		40.39	88.5	366	=	81					22	28.5	0.9684	YES		LO.	2	£	Ş	max > Uff, insig p value
6.175 10.53 N/A 0 10 100 0.006 0.031 0.0404 3 106 97.2 106.4 N/A 310 3 3 0 0.15 N/A 0.25 1 2 50 100.4 N/A 0.25	RGANICS	(/a/)	(/Bn)	(/ðn)			(/Bn)	(vgv)	(//Bn)				П							
TROPE 0.225 0.321 3.1 19 64 71.9 0.399 3.111 4.3 72 125 424	JON.	5.175	10.53	N/A	6						8	97.2	٧/٧ عرام	2						no detects
0225 0.321 3.1 18 64 71.9 0.369 3.111 4.3 7.2 1.25 42.4	PATE	104.4	N/A	310	m						7	8	0.0416	YES				83	YES	sig p voltue, only 1/2 detects in BG
	ATE/NITRITE	0.235	0.321	3.1	<u>e</u>	3				72	125	424	0.9993	Ş		-				
51 94.1 0.012 0.054 0.058 3 75	1	0.008	0.024	0.024	3					8	75	8	N/A	Ş.			7			

				SITE					BACKGROUND	DNUC			SCORES			HUMAN	COMMENTS	Γ
Confaminant	CWGCC STANDARD SAMPLE MEAN MAX DETECT	SAMPLE MEAN	MAX DETECT	DETECTION FREQUENCY		AMPLE SIZE PERCENT DETECT	SAMPLE MEAN LOGNOBIALI 195%. MAX	LOGNOBMAL 95%. UTL	MAX	DETECTION	SAMPLE SIZE P	MALE SIZE PERCENT DETECT	TEST P.	NO OF EXCEEDANCES	POTENTIAL COC	HEALTH		
VOA/ SVOA/ PESTICIDES	(/Bn)	(/bn)	(//Bn)				(//Bn)	(J/Bn)	(l/Bn)									Γ
																		Γ
METHYLENE CHLORIDE	4.7	2.882	Q	.`	201	29'9	2.882	17.26	31	14	&	15.7	0.9907	7	YES	2	Insig p votue, pot. lab contaminant	_
TETRACHLOROETHENE	9.0	2,586	5		105	90:0	-							-	ves	9	only 1/105 detects	
BIS (2 - ETHYLHEXYL) PHITHALATE	1.8	8.304	4	·	23	17.39	8.304	11.82 N/A	N/A	c	91	0	0.0414	4	YES	2	pot, tab contaminant	
1,1,1 - TRICHLOROETHANE	300	0.1468	0.83		2 22	60'6								0	YES	YES	2/22 detects	
ATRAZINE	6	0.2109	_	₹	88	86.18					_			0	S3A	X.	45/68 detects	-

C's: Site 8 - Landfill Pond

Table (page 1 of 2)

			SITE						BACKGROUND	Q			SCORES	POTENTIAL	ESSENTIAL	THE	THEATURE VALUE		HIBMAN	COMMENT
Confaminant	SAMPLE MEAN	10GNORMAL 95% UCL FOR	MAX DETECT	DETECTION	SAMPLE	PERCENT	SAMPLE MEAN	LOGNORMAL	MAX	DETECTION	SAMPLE	PERCENT	RST P.	8	MUTRIEN	¥	MEAN	¥	HEALTH	
		MEAN				-		TID WEA	+	+	-	-+	AVINE						8	
RADIONUCLIDES	(bCl/l)	(PCIV)	(bCl/l)				(bCl/l)	(bCl/l)	(pCl/l)		+		+							
AMERICIUM-241	0.00		10000		2		0.00	0.023	0.024		82		0.0973	0						
CESIUM-137	0.159	0.321		2	12	-	0.096		1.7		92		0.129	Ş						
PLUTONIUM-239/240	9000				13		0.00		0.04		8		0.0026	YES					YES	ag p value, site + 1.5°8G
STRONIIUM-89,90	0.03				•		0.546		89.		29		0.0044	YES					YES	sig p volue, site + 1.8*BG
TRITOM	484.691			0	8		51.462	7	650		3		0.000	YES					YES	alg p volue, afte + 9*80
URANIUM-233.234	0.255			4	٥	_	0.458	1.364	2.59		8		0.8942	õ						
URANIUM-236	700	0.073		-	o :		0.0	0.103	0.2		٤ :		0.6321	2			-			
	7		3				or o	C .	2u -		2		I OHOI	ᇐ						
METALS	(Vav)	(/bn/)	(//a//)				(no/)	(na/l)	(ng/l)		-					807	000	4		
											+				T	((0)	(1)	((0)		TO THE PROPERTY OF THE PARTY OF
ALUMINUM	2815	32636		5	71	23.5	695.294	4404.622	5840	۶	011	28.2	0.2406	YES				809	Q	maxVIII. haid bixda a only 1 alexated of 13/17 detects
ANTIMONY	19.23		5 27.7		17	82.4		65.28	26.5	6	7.0	8	0.0034	YES				-	2	stap value due to Maher defection limit in ste than 8G
ARSENIC	200			,	16	53	187.1	6 183	2.9	g	Z	PB. I	0.0001	YES		_		0	õ	Map value, but site = bottom of the 8G literature range.
BARIUM	637.4			_			67.617	148.877	306	3	103	18.4	0.0001	YES		۰		152	YES	alg p value, site = 9" BG
BERYLLIUM	162'0		XX XX		17		0.943	4.756	8.4	•	87	93.1	A,N,	9				•		no defects
CADMIUM	2.543					66	1,744	6.426	A/X	0	8	8	10000	YES				081	2	sig p value, site has 3/16 detects, site in lower range of lift.
CALCIUM	161412	-	2				C)	96761.525	74600	125	125	0	0.000	YES	YES				2	essential nutrient
CESIUM	262.9	_		0			Ö	1551.727	400	60	8	91.3	ď Ž	Š			0.02			no detects
CHROMIUM	8.959		29.6			_		16.863	18.9	15	5	83.6	0.0274	YES		0.73	2	2	YES	sig p value, 3 elevated of 5/17 detects, site+2*8G
COBALT	7.419							9.256	7.9	• • • • • • • • • • • • • • • • • • • •	88	93.2	0.0001	YES			0.2	5.8	YES	sig p value, site = 3" BG
COPPER	12.076					κ		28.468	16.5	8	8	63.4	0.2547	VES		0.83	2	8	2	max>U1L insig p value, only 1 elevated of 5/17 detects
RON	78476		5				5	6637.829	26300	110	8	7.8	10000.0	YES	YES				2	essential nutrient
LEAD	4.159					23.5		8.567	₹	37	3	8	0000	YES		0.0		8	Ş	sig p value, but site lower part of the BG literature range
TITHIOM	46.22			E				63.036	9.11	47	86	25	10000	YES		9/00	=	37	YES	sg p value, ste = 2* BG
MAGNESIUM	34682	•,	•				id)	11266.249	0000	<u>8</u>	91	10.2	0000	YES	YES				오	essentici nuttient
MANGANESE	6191						•	488.154	4060	112	123	6.6	0000	YES				8	YES	slg p value, above literature range, site = 16 * 8G
MERCURY	0.108		_					0.638	4.	80	8	91.6	X/X	Ş		10.0		2		no pitest, only 1/17 defects, means BG
MOLYBDENUM	10.01	_		ν,				23.37	25.1	12	26	87.6	0.0006	YES	_		_	6.9	YES	sig p value, sit = 2 · BG
NICKEL	57.11							33.254	12.1	4	65	84.8	0.0012	YES			0	_	YES	ag pivalue, 2 elevated out of 4/17 defects, ate = 1.5.* 8G
POLASSION	OACIA.	`	B, '	•			2	5432.96	8/9	89	8	32	10000	. ves	YES				<u>Q</u> .	essential nutrient
SELEMUM	2.122	4.14	,		2 5	77	1.378	5.462	7	₹ ;	8 8	96.7	ď Ž	YES		.	0.2	8	2	no pivalue, only 1/17 detects
SIIVE	2899			2 40		2	3801.897	(50:/224)	200	<u>}</u>) B	2 3	2000	AES		8			2 5	signovatue, site is well within the BG literature values
SODIUM	71006	~	=	_			17	38052.976	45400	1 90	127		1000	3 4	, E	È.		3	2 2	
STRONTIUM	906.5			91	Ä	8:11		472.439	804	88	8	2	0.0001	S	!	6.3		802	YES	son volte, ste = 45°PG
THALLIUM	0.868	1.225	N/A		17	<u>5</u>	50	3.866	3.4	6	8	696	∢ Z	2			• • •			no detects
NE	49.2	127.206	243			58.8	22.609	92.862	28	11	8	91.1	0000	YES		-			YES	ag p value, afte = 2°8G
VANADIUM	25.02	50.854		0	17	41.2	7.836	42.095	18.2	27	25	70.7	10000	YES				-	YES	sig p value, str = 3 * BG
ZINC	3194.6	60	00091			0	38.201	182.699	98	88	123	28.5	10000	YES		S	2	24	YES	sig p value, site = 80 * 8G
INORGANICS	(//Bn)	(VBN)	(/Bn)				(/Bn)	(/6n)	(vav)		-	+								
												ŀ								
CYANIDE	0000	200	_		è		900	0.03	000	m	28	97.2	∢ Ž	YES					Ş	only 1/19 detects
NIRATE	90.0	ď i	Ϋ́N ·		= ';	_	0.15	∢ Ż	0.26	-	8		0.7602	V/A				22		no defects
NITRATE/INITRITE		8			9		0.389	E .	4	22	125	42.4	0.832	2						
NITRITE	0.029	0.066	0.063	ō	12	S	0.012	0.054	0.058	9	75	96	10000	S.	1					

				SITE					BACKGROUND	Q			SCORES			Ĭ	HUMAN	COMMENTS
Contaminant	CWOCC STANDARD SAMPLE MEAN	SAMPLE MEAN	MAX DETECT	DETECTION	SAMPLE	PERCENT DETECT SAMPLE	MEAN	LOGNORMAL P	MAX DE	DETECTION S.	SAMPLE PER	PERCENT DETECT	TEST P.	NO OF EXCEEDANCES	POTENTIAL	ΣŬ	нелги	
VOA/ SVOA/ PESTICIDES	(/Bn)	(/Bn)	(/Bn)				(/đn)) (/bn)	(//Bn)									
																		2
1,1 DICHLOROETHANE	A/N	6.382	9	3	7	76.47								0	YES		YES 13/17	13/17 detects
1,2 DICHLOROETHENE	A/N	4.363	14	-9	17	35.29								o	YES		YES 6/17 c	6/17 detects
2 - BUTANONE	₹/X	10.65	92	60	_	17.66								0	YES			3/17 detects
4 - METHYL- 2 - PENTANONE	₹/X	900	12	~	17	11.76								0	YES		YES 2/17 c	2/17 detects
ACETONE	√/Z	34.91	8	'n	91	31.25						_		0	YES			13/17 detects
CARBON DISULFIDE	¥/x	2.706	•		17	5.88								0	Q.			
CHLOROETHANE	A/A	15.24	34	ō	17	58.85								0	YES		YES 5/16 C	5/16 detects
ETHYL BENZENE	989	12.97	2	4	17	82.35	_						_	Ь	YES		YES 14/17	- 1
METHYLENE CHLORIDE	4.7	15.62	<u>§</u>	40	17	29.43	4.794	17.262	3	7	68	15.7	0.9944	sc.	Q.		No	insig p value, potential lab contaminant
TOLUENE	0001	44.32	88	-52	17	88.24								0	YES		YES 15/17	15/17 detects
TOTAL XYLENES	A/N	14.76	8	13	17	76.47								0	ves		YE\$ 13/17	13/17 detects
VINYL ACETATE	A/A	7.588	40	_	17	5.88								0	Q.	-	-	3
0 - XYLENE	₹/X	5.167	80	2	E)	66.67								0	ves	-	YES 2/3 de	2/3 detects
2 - METHYLNAPTHALENE	₹/Z	22.333	8	6	6	8								0	YES		YES 3/3 de	3/3 detects
4 - METHYLPHENOL	√××××××××××××××××××××××××××××××××××××	Ξ	78	_	6	33.33								0	Q			
NAPHTHALENE	0.0028	20.67	8	6	6	001					_			3	YES		YES 3/3 de	3/3 detects

TABLES D-2.1 THROUGH D-2.8 HUMAN HEALTH CANCER AND NONCANCER RISK

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 1 - Ponds A1 and A2 TABLE D-2.1

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(bCi/l)	(bCi/l)	(pCI/day)	SFo (risk/pCi)		(LECR)	(%)	(HQ)	(mrem/pCl)	(mrem/year)
AMERICIUM-241	0.018	0.034	0.065	2.4E-10	A/A	8.6E-08	3.4%	A/N	3.6E-03	0.087
PLUTONIUM-239/240	0.022	0.028	0.054	2.3E-10		6.8E-08	2.7%		3.5E-03	0.069
URANIUM 233,234	3.346	3.872	7.426	1.6E-11		6.5E-07	25.5%		2.9E-04	0.783
URANIUM-235	0.203	0.313	0.600	1.6E-11		5.3E-08	2.1%		2.7E-04	0.058
URANIUM-238	4.917	5.765	11.056	2.8E-11		1.7E-06	66.4%		2.5E-04	1.027
					TOTAL	2.6E-06	100%		TOTAL	2.025
METALS, INORGANICS,	(//211)	(Voil)	(אייטרי-טאיסשו)	SFO	RfDo	6035	3	Č		
			A Resident	(115E/(111g/Eg-04y))	(App-By/Bill)	(NO TA)	(ar)	200		
LITHIUM	44.777	48.778	1.3E-03						N/A	A/N
STRONTIUM	339.615	394.417	1.1E-02		9.0			0.018		
TETRACHLOROETHENE	0.0792	0.23	6.3E-06	5.20E-02	0.01	1.4E-07	3%	0.001		
TRICHLOROETHENE	0.0817	0.328	9.0E-06	1.10E-02		4.2E-08	%			
ATRAZINE	1.0458	1.815	5.0E-05	2.22E-01	0.035	4.7E-06	%96	0.001		
					TOTAL	70 20 7	7006	000		
						71.12	<u> </u>			

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 2 - Ponds A3 and A4 TABLE D-2.2

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE PT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(hCi/l)	(hCi/i)	(pCi/day)	SFo (risk/pCi)		(IECR)	(%)	(HQ)	(mrem/pCl)	(mrem/year)
URANIUM-233,234	1.378	1.613	3.093	1.6E-11		2.7E-07	32.8%	N/A	2.9E-04	0.326
URANIUM-235	0.084	0.104	0.199	1.6E-11		1.7E-08	2.1%		2.7E-04	0.019
URANIUM-238	1.542	1.83	3.510	2.8E-11		5.4E-07	65.1%		2.5E-04	0.326
					TOTAL	8.3E-07	100.0%		TOTAL	0.672
-				•						
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(l/6n)	(J/Bn)	(mg/kg-day)	SFo (risk/(mg/kg-day))	RfDo (mg/kg-day)	(IECR)	(%)	(HQ)		
BARIUM	84.324	88.61	2.4E-03		7.00E-02			0.035	N/A	N/A
NITRATE/NITRITE	2.942	3.724	1.0E-04		1.60E+00			0.000		
NITRITE	0.125	0.196	5.4E-06		1.00E-01		1.	0.000		
DICAMBA	0.475	3.5	9.6E-05		3.00E-02			0.003		
ATRAZINE	0.7281	1.525	4.2E-05	2.22E-01	3.50E-02	4.0E-06	%0%	0.001		
SIMAZINE	0.1563	0.308	8.4E-06	1.20E-01	2.00E-03	4.3E-07	%0	0.004		
					TOTAL	4.4E-06	100.0%	0.043		

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 3 - Ponds B1 and B2 TABLE D-2.3

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL. FOR MEAN EXPOSURE POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD GUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(hCl/l)	(l/1)d)	(pCl/day)	SFo (risk/pCl)		(LECR)	(%)	(HØ)	(mrem/pCl)	(mrem/year)
AMERICIUM-241	0.021	0.038	0.073	2.4E-10	A/X	9.6E-08	8	A/N	3.6E-03	0.097
PLUTONIUM-239/240	0.05	0.079	0.152	2.3E-10		1.9E-07	18%		3.5E-03	0.196
URANIUM 233,234	1.37	1.76	3.375	1.6E-11		3.0E-07	28%		2.9E-04	0.356
URANIUM-235	0.092	0.125	0.240	1.6E-11		2.1E-08	%		2.7E-04	0.023
URANIUM-238	1.254	1.481	2.840	2.8E-11	-	4.4E-07	42%		2.5E-04	0.264
					TOTAL	1.0E-06	100%		TOTAL	0.936
METALS, INORGANICS,				SFo	RfDo					
VOA/SVOA/PESTICIDES	(l/gn)	(//Śn)	(mg/kg-day)	/kg-day) (risk/(mg/kg-day))	(mg/kg-day)	(LECK)	(%)	(3E)		
птній	19.32	25.25	6.9E-04						A/N	N/A
STRONTIUM	273	308.8	8.5E-03		6.00E-01			0.014		
ACETONE	37.038	156.6	4.3E-03		1.00E-02			0.429		
TRICHLOROETHENE	4.375	5.48	1.5E-04	1.10E-02	1.10E-02	7.1E-07	2%	0.014		
cls - 1,2 - DICHLOROETHENE	3.3	1.631	4.5E-05		1,00E-02			0.004		
CARBON TETRACHLORIDE	0.3083	1.103	3.0E-05	1.30E-01	7.00E-04	1.7E-06	12%	0.043		
CHLOROFORM	0.2158	0.708	1.9E-05	6.10E-03	1,00E-02	5.1E-08	%	0.002		
TETRACHLOROETHENE	0.2133	1.857	5.1E-05	5.20E-02	1.00E-02	1.1E-06	8%	0.005		
TRICHLOROETHENE	3.0775	8.35	2.3E-04	1,10E-02	1.10E-02	1.1E-06	8%	0.021		
VINYL CHLORIDE	0.1783	0.414	1.1E-05	1.9		9.2E-06	%99			
cis - 1,2 - DICHLOROETHENE	0.75	3.4	9.3E-05		1.00E-02			600:0		
					TOTAL	1 4F-05	100%	0.542		

TABLE D-2.4
HUMAN HEALTH RISK ASSESSMENT COC's: Site 4 - Pond B3

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(bCI/I)	(bCl/I)	(pCi/day)	SFo (risk/pCi)		(LECR)	3	(HQ)	(mrem/pCl)	(mrem/year)
AMERICIUM-241	0.027	0.070	0.134	2.4E-10		1.8E-07	65.8%	A/A	3.6E-03	0.178
PLUTONIUM-239/240	0.018	0.038	0.073	2.3E-10		9.2E-08	34.2%		3.5E-03	0.094
					TOTAL	2.7E-07	100%		TOTAL	0.272
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(I/Bn)) (I/Bn)	(mg/kg-day)	SFo (risk/(mg/kg-day))	Rfbo (mg/kg-day)	(LECR)	£	(OH)		
NITRITE	0.636	1.298	2.489		1.00E-01			0.0004	A/N	N/A
1,4 - DICHLOROBENZENE	0.092	0.243	0.466	2.40E-02	8.00E-01	6.8E-08	7%	0000		
BROMODICHLOROMETHANE	0.17	0.714		6.20E-02	2.00E-02	5.2E-07	52%	0.001		
CHLOROFORM	2.9	3.809	7.305	6.10E-03	1.00E-02	2.7E-07	27%	0.010		
TETRACHLOROETHENE	0.04	0.122	0.234	5.20E-02	1.00E-02	7.4E-08	8%	0.000		
TRICHLOROETHENE	0.078	0.442	0.848	1.10E-02		5.7E-08	%9			
					TOTAL	9.9E-07	100%	0.012		

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 5 - Ponds B4 and B5 TABLE D-2.5

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE AVERAGE DAILY POINT INTAKE CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED CFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(bCl/l)	(bCl/l)	(pCI/day)	SFo (risk/pCl)		(LECR)	(X)	(HQ)	(mrem/pCl)	(mrem/year)
PLUTONIUM-239/240	600:0	0.012	0.023	2.3E-10	N/A	2.9E-08	4.5%	N/A	3.5E-03	0:030
TRITIUM	197.830	287.482	551,335	5.4E-14		1.6E-07	25.6%		6.4E-08	0.013
URANIUM 233,234	0.906	1.079	5.069	1.6E-11		1.8E-07	28.5%		2.9E-04	0.218
URANIUM-238	0.774	0.897	1.720	2.8E-11		2.6E-07	41.4%		2.5E-04	0.160
					TOTAL	6.4E-07	100%		TOTAL	0.421
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(I/Bn)	(l/bn)	(mg/kg-day)	SFo (risk/(mg/kg-day))	RfDo (mg/kg-day)	(LECR)	દ	(H)		
LITHIUM	14.36	21.91	6.0E-04							
STRONTIUM	255	284.4	7.8E-03		6.00E-01			0.013	A/N	N/A
CYANIDE	9.359	14.752	4.0E-04	2.00E-02	2.00E-02	3.5E-06	46%	0.020		
NITRATE	2.767	3.642	1.0E-04		1.60E+00			0.0001		
NITRATE/NITRITE	3.359	4.975	1.4E-04		1.60E+00			0.000		
NITRITE	0.409	0.576	1.6E-05		1.00E-01	_		0.0002		
ACETONE	15.36	20.3	5.6E-04		1.00E-01			9000		
BIS (2 - ETHYLHEXYL) PHTHALATE	6.316	6.316	1.7E-04	1.40E-02	2.00E-02	1.0E-06	14%	0.009		
CHLOROFORM	0.743	1.93	5.3E-05	6.10E-03	1.00E-02	1,4E-07	%	0.005		
TETRACHLOROETHENE	0.134	0.205	5,6E-06	5.20E-02	1.00E-02	1.3E-07	%	0.001		
TRICHLOROETHENE	0.3831	0.823	2.3E-05	1.10E-02		1.1E-07	%			
DICAMBA	0.2195	0.385	1.1E-05		3.00E-02			0000		
ATRAZINE	0.556	0.857	2.3E-05	2.22E-01	3.50E-02	2.2E-06	30%	0.001		
SIMAZINE	0.1461	0.256	7.0E-06	1.20E-01	2.00E-03	3.6E-07	2%	0.004		
					TOTAL	7.5E-06	100%	0.058		
				•						

TABLE D-2.6

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 6 - Pond C1

CONTAMINANT	SAMPLE MEAN CONCENIRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(pCI/I)	(þCi/l)	(pCl/day)	SFo (risk/pCl)		(LECR)	33	(HQ)	(mrem/pCl)	(mrem/year)
PLUTONIUM-239/240	90:00	0.011	0.021	2.3E-10	A/N	2.7E-08	5.2%	N/A	3.5E-03	0.027
URANIUM 233.234	0.796	1.214	2.328	1.6E-11		2.0E-07	39.6%		2.9E-04	0.246
URANIUM-235	0.07	0.099	0.190	1.6E-11		1.7E-08	3.2%		2.7E-04	0.018
URANIUM-238	0.599	0.909	1.743	2.8E-11		2.7E-07	52.0%		2.5E-04	0.162
					TOTAL	5.1E-07	100%		TOTAL	0.453
				•						
										
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(J/Bn)	(I/6n)	(mg/kg-day)	SFo (risk/(mg/kg-day))	RfDo (mg/kg-day)	(LECR)	(%)	(не)		
BARIUM	91.32	121.9	3.3E-03		7.00E-02			0.048	N/A	N/A
STRONTIUM	241.8	260.4	7.1E-03		6.00E-01			0.012		
					TOTAL	0.00E+00	%0	0900		

TABLE D-2.7

HUMAN HEALTH CANCER AND NONCANCER RISKS: Site 7 - Pond C2

				•	-					
CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE AVERAGE D POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(bCl/l)	(þCi/l)	(pCl/day)	SFo (risk/pCi)		(LECR)	(%)	(HO)	(mrem/pCl)	(mrem/year)
PLUTONIUM-239/240	0.022	0.029	0.056	2.3E-10	A/N	7.0E-08	7.8%	N/A	3.5E-03	0.072
URANIUM 233,234	1,211	1.48	2.838	1.6E-11		2.5E-07	27.8%		2.9E-04	0.299
URANIUM-235	0.128	0.185	0.355	1.6E-11		3.1E-08	3.5%		2.7E-04	0.034
URANIUM-238	1.514	1.849	3.546	2.8E-11		5.4E-07	80.09		2.5E-04	0.329
		-			TOTAL	8.9E-07	100%		TOTAL	0.735
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(J/Bn)	(l/Bn)	(mg/kg-day)	SFo (risk/(mg/kg-day))	RfDo (mg/kg-day)	(LECR)	(%)	(не)		
BARIUM	83.86	92.25	2.5E-03		7.0E-02			0.036	N/A	A/A
SELENIUM	1.85	2.885	7.9E-05		5.0E-03			0.016		
STRONTIUM	331.5	355.6	9.7E-03		6.0E-01			0.016		
NITRATE	104.4	A/N	2.9E-03		1.6E+00			0.002		***************************************
1,1,1 - TRICHLOROETHANE	0.1468	0.26	7.1E-06	1.9E+00		5.8E-06	%89			
ATRAZINE	0.2109	1.047	2.9E-05	2.2E-01	3.5E-02	2.7E-06	32%	0.001		,
					TOTAL	8.5E-06	100%	0.071		

TABLE D-2.8

HUMAN HEALTH RISK ASSE. ... INT COC's: Site 8 - Landfill Pond

CONTAMINANT	SAMPLE MEAN CONCENTRATION	LOGNORMAL 95% UCL FOR MEAN EXPOSURE POINT CONCENTRATION	AVERAGE DAILY INTAKE	ORAL SLOPE FACTOR	ORAL REFERENCE DOSE	CANCER RISK	RELATIVE RISK CONTRIBUTION	HAZARD QUOTIENT	RADIATION DOSE CONVERSION FACTOR	COMMITTED EFFECTIVE DOSE RATE EQUIVELENT
RADIONUCLIDES	(bCi/i)	(hCl/l)	(pCI/day)	SFo (risk/pCi)		(LECR)	(%)	(НО)	(mrem/pCi)	(mrem/year)
PLUTONIUM-239/240	900:0	0.008	0.015	2.3E-10	Ψ/Z	1.9E-08	2.1%	A/A	3.5E-03	0.020
STRONTIUM-89,90 TRITIUM	0.93 484.691	1.202 770.894	2.305	3.60E-11 5.4E-14		4.5E-07 4.4E-07	49.9%		1.4E-04 6.4E-08	0.120
					TOTAL	9.1E-07	100%		TOTAL	0.174
METALS, INORGANICS, VOA/SVOA/PESTICIDES	(I/Bn)	(I/Bn)	(mg/kg-day)	SFo (risk/(mg/kg-day))	RfDo (mg/kg-day)	(IECR)	(%)	(не)		
BARIUM	637.4	737.5	2.0E-02		7.00E-02			0.289	N/A	N/A
CHROMIUM	8.959	22.5	6.2E-04		0.005 (VI)			0.123		
COBALT	7.419	12.65	3.5E-04							
MANGANESE	40.22	33.80 1735	1.5E-03 4.8E-02		5.00E-03			6.507		
MOLYBDENUM	10.07	24.56	6.7E-04		5.00E-03			0.135		
NICKEL	11.75	19.7	5.4E-04		2.00E-02			0.027		
SILVER	5.682	9.152	2.5E-04		5.00E-03			0:050		
STRONTIUM	905.5	1052	2.9E-02		6.00E-01			0.048		
TIN	49.2 25.02	50.854	3.5E-03		6.00E-01 7.00E-03		-	0.006		
ZINC	3194.6	4006	1,1E-01		3.00E-01			0.366		
1,1 DICHLOROETHANE	6.382	7.464	2.0E-04		1.00E-01			0.002		
1,2 DICHLOROETHENE	4.353	5,611	1.5E-04		9.00E-03			0.017		
4 - METHYL- 2 - PENTANONE	9.03	13.36	3.7E-04	7.80E-02	2.00E-03	1.2E-05	100.0%	0.183		
ACETONE	34.91	60.79	1.7E-03		1.00E-01			0.017		
CHLOROETHANE	15.24	19.46	5.3E-04							
ETHYL BENZENE	12.97	15.08	4.1E-04		-					
TOLUENE	44.32	53.7	1.5E-03							
TOTAL XYLENES	14.76	17.3	4.7E-04							
0 - XYLENE	5.167	9.81	2.7E-04							
2 - MEIHYLNAPIHALENE	22.33	34.18	9.4E-04							
NAPHTHALENE	20.67	30.97	8.5E-04							
		Parties of the second s			TOTAL	1.2E-05	100%	10.968		

Table 1: Total Radiochemistry

	-			Percent			4 4 4	Inter-
puod	Analyte	Sample	Standard	Above Standard	Mean	Median	Percentile	Range
25	AUEDICTIM_241	82	0.05	0	0.0044	0.0029	0.01	0.008
	CFETIM-137	76	08	0	0.0961	0.0659	0.3	0.3039
	CESTON-15/	67	=	5.97	3.4365	1	က	1.5964
	GROSS ALTIM	83	19	3.17	4.6234	3	5.5	2.441
	GRUSS BEIN	83	0.05	0	0.0044	0.0019	0.01	0.0049
BACKGROUND	FLUIDATION-233/240	57	80	0	0.5458	0.5	0.92	0.64
	SIKUNITUN-63,30	5	200	3.77	51.4518	71.7449	200	210
	IKILIUM INTERIOR OF STA	6	10	0	0.4577	0.3055	0.7865	0.2897
	UKANIUM-233,234	3 8	10	0	0.0396	0	0.1	0.0779
	UKANIUM-233	25	01	0	0.3601	0.2	.0.6584	0.3
	UKANTUM 520		0.05	11.11	0.0181	0.0091	0.0371	0.012
	Anckicion-241	2	08	0	0.1075	:0.018	0.53	0.2775
	CES1UM-13/	***************************************	.=	12.5	6.3954	6.15	8.1	4.3385
	GRUSS ALPRA	9 0	19	2	13.5209	13	17.69	4.84
-	DI HTOWING - 930 / 940	14	0.05	0	0.0217	0.0193	0.035	0.05
A1/A2		12	8	0	0.5888	0.68	0.81	0.3184
	OCCUPATION OF THE PROPERTY OF		200	0	55.75	69.5	130	138.5
		7		0	3.3456	3.25	4.1	1.395
	UKARION-255, 254	71	01	0	0.2034	0.26	0.3206	0.2356
	UKANIUM-235				_	4.9705	6.5	1.854
	UKAR1UM-238							

Table 1: Total Radiochemistry (Second of five pages)

Pond	Analyte	Sample Size	CWQCC	Percent Above Standard	Mean	Median	85th Percentile	Inter- Quartile Range
	AMERICIUM-241	48	0.05	0	0.0042	0.0033	0.0082	0.0052
	CESIUM-137	49	80	0	0.0681	0.0274	0.17	0.1883
	GROSS ALPHA	332	11	0.3	3.7709	3.6875	6.076	2.7755
	GROSS BETA	332	19	0.3	6.083	5.3865	8.161	2.8635
84/84	PLUTON1UM-239/240	55	0.05	O	0.0046	0.003	. 0.0098	0.0069
£ /2	STRONTIUM-89,90	46	80	0	0.3533	0.31	0.56	0.25
	TRITIUM	22	200	4.55	121.2927	83,3024	181,7035	. 98
	URANIUM-233,234	9	10	0	1.3781	1.2815	2.2495	0.9574
·	URANIUM-235	60	10	0	0.0842	0.0729	0.1485	0.0735
	URANIUM-238	59	10	0	1.5419	1.231	3.007	0.95
	AMERICIUM-241	6	0.05	11.11	0.0214	0.0142	0.045	0.0246
	CESIUM-137	12	80	0	0.371	0,115	0.665	0.236
	GROSS ALPHA	9	11	0	2.4158	2.245	4.2	1.395
	GROSS BETA	8	19	12.5	8.5975	6.8015	9.5	1.7905
60/10	PLUTONIUM-239/240	14	0.05	35.71	0.0498	0.0374	90.0	0.0393
7 9/10	STRONTIUM-89,90	12	60	C	0.1786	0.16	0.29	0.1298
	TRITIUM	9	500	16.67	249.5	215	650	396
	URANIUM-233,234	14	10	0	1.3701	1.2095	2.2	0.827
	URANIUM-235	14	10	۵	0.0916	0.1018	0.13	0.065
	URANIUM-238	14	10	0	1.2537	1.1825	1.8	0.63

Table 1: Total Radiochemistry (Third of five peges)

Pond	Analyte	Sample Size	CWQCC Standard	Percent Above Standard	Mean	Median	85th Percentile	Inter- Quartile Range
-	AMERICIUM-241	5	0.05	20	0.027	0.023	0.062	0.0155
	CESIUM-137	2	80	0	0.211	-0.0432	1.15	0.132
	GROSS ALPHA	က	11	0	0.3296	0.51	0.69	0.9012
	GROSS BETA	4	19	25	17.2075	14.455	32.02	13.015
6	PLUTONIUM-239/240	S	0.05	0	0.0181	0.015	0.0399	0.0026
2	STRONTIUM-89,90	5	8	0	0.1495	0.18	0.31	0.165
	TRITIUM	2	200	0	51.5	51.5	160	217
	URAN1UM-233,234	ဖ	10	0	0.2794	0.2281	0.93	0.335
	URANIUM-235	9	10	0	0.0272	0.0223	0.0635	0.055
	URANIUM-238	မွ	10	0	0.2881	0.1705	0.93	0.1125
	AMERICIUM-241	28	0.05	0	0.0071	0.0051	0.022	0.0088
	CESTUM-137	32	80	0	0.0966	0.013	0.3937	0.2694
	GROSS ALPHA	185	11	0	3.6247	3.268	5.848	3.416
	GROSS BETA	186	. 19	0	7.6701	7.8205	9.004	2.06
2070	PLUTONIUM-239/240	36	0.05	-0	0.0089	0.0059	0.0174	0.0079
04/00	STRONTIUM-89,90	30	8	0	0.2597	0.2018	0.45	0.2405
	TRITIUM	23	200	8.7	197.8304	124.5024	310	193.3164
	URANIUM-233,234	35	10	0	0.9056	0.72	1.46	0.6238
	URANIUM-235	35	10	0	0.0547	0.0428	0.1105	0.0808
	URANIUM-238	35	10	0	0.7738	0.61	1.114	0.3257

Table 1: Total Radiochemistry

Pond	Analyte	Sample Size	CWQCC	Percent Above Standard	Mean	Median	85th Percentile	Inter- Quartile Range
A	AMERICIUM-241	4	0.05	0	0.0077	0.0032	0.0233	0.0134
	CESIUM-137	5	80	0	0.2612	0.11	0.92	0.5041
9	GROSS ALPHA	3	7	0	2.0793	1.828	4.2	3.99
9	GROSS BETA	4	S	50	7.076	6.84	12	8.528
5	PLUTONIUM-239/240	9	0.05	0	0.0063	0.005	0.0142	0.004
	STRONTIUM-89,90	5	60	0	0.3765	0.41	0.53	0.0875
	TRITIUM	2	200	0	187.5	187.5	330	285
	URANIUM-233,234	9	æ	0	0.7965	0.8735	-1:1	0.622
<u>ت</u> ــــــــــــــــــــــــــــــــــــ	URANIUM-235	S	S	0	0.0704	0.0744	0.098	0.0457
1	URANIUM-238	9	. 5	0	0.5993	0.6129	0.88	0.51
	AMERICIUM-241	19	0.05	5.26	0.0117	0.0052	0.017	0.0092
	CESIUM-137	26	80	0	0.094	0.046	.0.404	0.1711
	GROSS ALPHA	160	7	10.63	4.4328	4.335	6.6195	3.028
	GROSS BETA	159	æ	96.86	7.0019	6.94	8.015	1.397
<u> </u>	PLUTON1UM-239/240	32	0.05	12.5	0.022	0.0127	0.045	0.0169
	STRONTIUM-89,90	24	8	0	0.4519	0.3973	0.67	0.2406
	TRITIUM	20	200	5	85.1089	76.8401	159.9391	132.3759
	URAN1UM-233,234	27	3	0	1.2115	1.2	1.798	0.98
	URANIUM-235	27	ស	0	0.1277	0.0953	0.2202	0.1482
	URANIUM-238	27	5	0	1.5136	1.3	2	1.0063

Table 1: Total Radiochemistry

Pond	Pond Analyte	Sample Size	CWQCC	Percent Above Standard	Hean	Median	85th Percentile	Inter- Quartile Range
	AMERICIUM-241	13	0.05	0	0.0064	0.004	0.0123	0.0053
	CESIUM-137	12	80	0	0.1586	0.1908	0.42	0.3053
•	GROSS ALPHA	8	11	0	3.6331	3.2	4.6	2.5955
-	GROSS BETA	8	19	0	9.5318	9.4655	12.67	5.235
	PLUTONIUM-239/240	13	0.05	0	0.0063	0.0061	0.009	0.0035
CANOF 1CL	STRONTIUM-89,90	6	8	0	0.9296	0.89	1.18	0.44
	TRITIUM	8	200	12.5	484.6911	364.9144	500	211.85
	URAN1UM-233,234	6	10	0	0.2549	0.23	0.43	0.19
	URANIUM-235	6	10	0	0.0338	0.05	0.08	0.052
	URANIUM-238	6	10	0	0.1028	0.07	0.1737	0.097

Table 2: Total Metals (First of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	110	28.18	·	0.00	0	695.2936	180.0000	1450.0000	549.1000
	ANTIMONY	91	90.11	14	2.20	0	14.2297	9.4000	28.1333	13.1306
	ARSENIC	84	88.10	20	0.00	ъ	1.7810	1.0000	3.1250	1.4929
	BARIUM	103	18.45	1000	0.00	0	67.6165	57.4000	85.7000	26.9412
:	BERYLLTUM	87	93.10	0.0076	6.90	0	0.9425	0.4688	1.9000	0.6471
	CADMIUM	80	100.00	1.5	0.00	0	1.7438	1.5561	2.9905	1.4071
	CALCIUM	125	0.00		0.00	0	24924.5720	23000.0000	33900.0000	10300.0000
	CESTUM	92	91.30	•	0.00	1	247.4670	173.9130	471.4286	341.3043
	CHROMIUM	91	83.52	50	0.00	0	4.2341	3.0000	7.3000	4.2857
BACKGROUND	COBALT	88	93.18		0.00	16	2.3979	1.7889	3.7143	1.8659
_	COPPER	93	63.44	16.05	0.00	0	6.1984	4.6286	11.7647	6.8092
-	IRON	129	7.75	1000	27.91	0	1335.6364	561:0000	1700.0000	952.0000
	LEAD	104	64.42	6.46	3.85	0	2.0438	1.2583	3.6000	1.8542
	LITHIUM	98	52.04	•	0.00	O	13.7107	4.3800	28.5714	6.8238
	MAGNESIUM	118	10.17	•	0.00	0	5279,6186	5090.0000	7140.0000	1720.0000
	MANGANESE	123	8.94	1000	1.63	0	99.3171	32.2000	125.0000	70.4000
	MERCURY	94	91.49	0.01	8.51	0	0.1397	0.1096	0.1855	0.1084
	MOLYBDENUM	97	87.63	•	0.00	21	5.2789	3.7182	8.6667	5.0526
	NICKEL	35	84.78	125	0.00		7.3842	4.7029	13.1000	6.6435
	POTASSIUM	100	32.00	•	0.00	0	1775,3750	1455.2941	3100.0000	1389.5000

Table 2: Total Metals (Second of fourteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWOCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
┞	SELENIUM	26	95.65	10	0.00	0	1.3777	0.9488	2.5000	1.2833
1 ~	SILICON	39	00.00	•	0.00	0	5861.8974	4930.0000	10000.0000	4820.0000
L	SILVER	88	86.36	0.59	13.64	0	2.8562	2.3077	5.1000	2.9860
	SODIUM	127	0.79	•	0.00	0	17166.9291	15400.0000	24800.0000	9400.0000
BACKGROUND	STRONTIUM	106	16.04	٠	0.00	0	195.5943	140.0000	222.222	49.6667
	THALLIUM	96	96.88	0.012	3.13	16	1.0431	0.8944	1.7889	0.9834
	TIN	90	81.11	•	0.00	0	22.6094	13.4111	35.0000	17.6667
	VANADIUM	92	70.65	•	00.00	0	7.8359	3.5313	14.9000	6.5701
1	ZINC	123	28.46	45	20.33	0	38.2911	16.0000	67.6000	24.6000
	AL UMINUM	13	38.46	٠	00.00	0	209.6346	81.0000	320.0000	116.5000
	ANTIMONY	13	100.00	14	00.0	0	9.3923	8.8000	20.4800	5.5733
1	ARSFNIC	13	23.08	50	0.00	0	3.9154	4.1000	6.8000	4.6000
	RARTIM	13	0.00	1000	0.00	0	50.4769	53.0000	60.9000	13.4000
	RERYLL TUN	13	100.00	0.0076	0.00	0	0.3692	0.3000	0.7143	0.2143
A1/A2	CADMIUM	60	100.00	1.5	0.00	0	1.4625	1.3500	2.2000	1.0500
<u> </u>	CALCIUM	13	0.00	•	00.00	0	27984.6154	25800.0000	43200.0000	13400.0000
<u></u>	CESTUM	13	92.31	•	0.00	0	153,4615	120.0000	375.0000	216.6667
.L	CHROMTUM	13	100.00	20	0.00	0	1.5385	1.4500	2.7500	0.8667
	COBAL T	13	100.00	•	0.00	0	1.5115	1.4286	2.8800	1.0095
1	COPPER	=	90.91	16.05	0.00	0	2.0682	1.8800	3.7000	1.7700

Table 2: Total Metals (Third of fourteen pages)

T C C	A STATE OF THE STA	Sample	Percent	CWGCC	Percent Above	Number of Non-Detects	e d	Median	. 85th Percentile	Inter- Quartile Range
	IRON	13	46.15	1000	7.69	0	211.1846	120.0000	248.0000	100.0000
	LEAD	13	69.23	6.46	7.69	0 .	2.0231	0.9333	4.1000	1.2000
	LITHIUM	13	00.0	•	0.00	0	44.7769	45.0000	51.1000	6.5000
	MAGNESIUM	13	00.00	•	0.00	0	30046.1538	30000.0000	35100.0000	3900.0000
-	MANGANESE	13	00.00	1000	0.00	0	128.1769	46.0000	422.0000	49.000
	MERCURY	13	92.31	10.0	7.69	0	0.1200	0.1077	0.1846	0.0923
	MOLYBDENUM	13	84.62		0.00	0	2.9115	2.6667	5.0000	2.7000
	NICKEL	13	53.85	125	00.00	0	5.9692	4.8000	9.8000	3.6000
A1 /A2	POTASSIUM	- 13	00.00	•	0.00	0	7693.0769	7850.0000	8870.0000	700.000
	SELENIUM	13	84.62	10	0.00	0	1.4000	1.1429	2.8571	. 1.2000
	SILICON	14	21.43	٠	0.00	0	1075.8929	532.5000	2380.0000	1674.0000
•	SILVER	13	100.00	0.59	0.00	0	1.9462	1.6000	3.5714	1.8905
	SODIUM	13	00.00	•	0.00	0	171384.6154	170000.0000	209000.00002	35000.0000
	STRONTIUM	13	0.00	•	0.00	0	339.6154	330.000	432.0000	94.000
	THALLIUM	13	92.31	0.012	7.69	2	1.5455	1.0667	3.0000	1.4667
	NIT	12	100.00	•	0.00	0	7.7458	6.7167	11.8400	4.8317
	VANADIUM	13	46.15	•	0.00	0	3.3692	3.2000	6.6000	1.6200
	ZINC	13	78.92	45	0.00	0	5.7000	3.333	19.0000	3.3000

Table 2: Total Metals (Fourth of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- ' Quartile Range
	ALUMINUM	- 21	28.57	٠	0.00	0	320.0286	307.0000	630.0000	506.2000
•	ANTIMONY	21	100.00	14	0.00	0	12.6476	9.3333	24.6500	10.9000
	ARSENIC	21	85.71	20	0.00	0	1.2762	1.0000	2.0000	0.9056
	BARIUM	21	4.76	1000	0.00	0	84.3238	82.8000	100.0000	12.2000
	BERYLL IUM	21	95.24	0.0076	4.76	0	0.6262	0.4667	0.8667	0.4333
	CADHIUM	18	100.00	1.5	0.00	0	1.5889	1.3750	2.5000	1.0000
•	CALCTUM	21	0.00	•	0.00	0	45395.2381	45500.0000	51700.0000	6300.0000
	CESTUM	20	75.00	·	0.00	0	218.8000	65.8333	450.0000	219.0476
	CHROMIUM	21	95.24	50	0.00	0	2.2690	2.0000	3.5000	1.5500
A3/A4	COBALT	21	100.00	•	0.00		2.2575	1.7071	3.6250	1.8619
	COPPER	20	70.00	16.05	5.00	0	5.0450	2.4250	12.8000	6.6750
	IROM	21	23.81	1000	0.00	0	237.5357	142.0000	480.0000	367.2000
	LEAD	20	60.00	6.46	5.00	0	2.4550	1.4500	3.1000	2.1472
	LITHIUM	17	35.29	•	0.00	0	13.6206	9.6000	16.6667	6.4000
	MAGNESIUM	21	0.00	•	0.00	0	11530.4762	11400.0000	14200.0000	3260.0000
	MANGANESE	22	4.55	1000	0.00	0	53.2091	39.2000	92.5000	61.4000
	MERCURY	24	100.00	0.01	0.00	0	0.0958	0.0913	0.1652	0.0957.
	MOLYBOENUM	17	82.35	•	0.00	-	6.5969	6.5000	13.000	5.9167
	NICKEL	21	76.19	125	0.00	0	7.2357	4.9500	15.3333	4.1667
	POTASSIUM	21	4.76	•	0.00	0	5435.7143	4130.0000	7900.0000	3930.0000

Table 2: Total Metals (Fifth of fourteen pages)

, Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Noń-Detects Omitted	Hean	Median	85th Percentile	Inter- Quartile Range
	SELENTUM	12	76.19	10	0.00	0	1,6024	1.5000	2.5000	1.4500
	SILICON	6	0.00	·	0.00	0	2891.1111	2950.0000	3450.0000	920.0000
	SILVER	21	100.00	0.59	0.00	0	1.9595	1.5000	2.9500	1.4667
	SODIUM	21	0.00	•	0.00	0	38071.4286	38300.0000	47700.0000	15600.0000
A3/A4	STRONTIUM	18	5.56		0.00	0	301.6667	295.0000	360.0000	77.0000
	THALLIUM	21	100.00	0.012	0.00	60	1.0056	0.8333	1.5000	0.9500
	TIN	16	93.75	•	0.00	0	13.6531	8.1250	26.6667	12.8667
	VANADIUM	21	66.67	•	0.00	0	3.7167	2.5000	4.5000	1.8000
	ZINC	21	33.33	45	9.52	0	20.3286	14.5500	29.0000	14.5000
	ALUMINUM	12	50.00	•	0.00	0	152.6458	84.2000	350.0000	187.9000
	ANTIMONY	12	100.00	14	0.00	0	10.9833	8.7867	20.4800	8.8033
	ARSENIC	9	44.44	50	0.00	0	2.1444	1.9000	3.6000	1.7667
	BARIUM	12	33.33	1000	0.00	c	40.8167	41.8500	79.3000	49.6500
-	BERYLLIUM	12	91.67	0.0076	8.33	0	0.3792	0.2813	0.5000	0.2625
81/82	CADMIUM	10	100.00	1.5	0.00	0	1.5800	1.5667	2.2000	0.7000
	CALCIUM	12	0.00	•	0.00	0	21900.0000	19000.0000	30000.0000	8250.0000
	CESIUM	12	100.00	•	0.00	0	233.3333	225.0000	450.0000	300.0000
	CHROMIUM	11	100.00	50	0.00	0	1.9545	1.8333	3.2800	1.9000
	COBALT	12	100.00		0.00	0	1.8375	1.4200	2.8800	1.2700
	COPPER	12	100.00	16.05	0.00	o	1.8875	1.6750	3.6000	1.3100

Table 2: Total Metals (Sixth of fourteen pages)

buod	Analvte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	IRON	12	33.33	1000	0.00	0	271.8333	239.0000	470.0000	206.0000
	LEAD	12	50.00	6.46	8.33	0	2.1708	0.9167	4.8000	2.0667
	LITHIUM	12	16.67	•	00.00	0	19:3167	16.5500	23.6000	10.000
	MAGNESIUM	12	0.00	•	0.00	0	20141.6667	21450.0000	24500.0000	8550.0000
	MANGANESE	12	0.00	1000	00.00	0	74.5250	55.8500	138.0000	70.4500
; 	MERCURY	12	100.00	10.0	00.00	0	0.1000	0.1000	0.1692	0.0923
	HOL YBDENUM	12	100.00	•	00.0	1	3.0091	2.9000	4.5600	2.9000
	NICKEL	12	91.67	125	00.00	0	4.9500	3.8167	9.8000	3.1667
	POTASSIUM	12	0.00	٠	0.00	0	5366.6667	5315.0000	6410.0000	1425.0000
81/82	SELENTUM	=	100.00	10	0.00	0	0.8955	0.8250	1.3333	0.5000
	SILICON	7.	28.57		0.00	0	1101.3571	845.000	2140.0000	1473.5000
	STIVER	12	91.67	0.59	8.33	0	6.6667	2.2208	4.5333	1.8333
	Sontum	12	0.00	٠	00.00	0	62433.3333	63300.0000	73200.0000	16100.0000
	STRONTIUM	12	8.33	•	00.00	0	273.0000	245.5000	301.0000	58,000
	THALLIUM	12	100.00	0.012	0.00	1	0.8273	0.7000	1.2667	0.5667
	NI NI	=	100.00	•	0.00	0	12.7000	7.8000	25.9333	8.6333
	VANADIUM	12	91.67	•	0.00	0	2.3083	2.2083	4.3333	1.9183
	ZINC	12	83.33	45	0.00	0	6.6583	4.1500	22.0000	4.8750

Table 2: Total Metals (Seventh of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	5	0.00		00.0	0	526.6000	520.0000	1000.0000	481.0000
	ANTIMONY	FO.	100.00	14	0.00	0	11.8400	8.5333	21.1000	10.0667
	ARSENIC	4	100.00	50	0.00	-0	0.9750	0.8000	2.0000	1.0500
	BARIUM	5	20.00	1000	0.00	0	16.4900	16.0000	30.000	12.7000
	BERYLL1UM	ស	100.00	0.0076	0.00	0	0.3700	0.3333	0.6667	0.1500
	CADMIUM	3	100.00	1.5	0.00	0	1.8667	2.2000	2.3000	1.2000
	CALCIUM	S	0.00	٠	0.00	0	33940.0000	36000.0000	40000.0000	5500.0000
	CESTUM	5	80.00	•	0.00	0	165.0000	125.0000	375.0000	200.0000
-	CHROMIUM	5	80.00	50	0.00	0	3.1700	2.7500	6.4000	1.4000
	COBALT	2	80.00	•	0.00		2.0700	2.1000	3.6500	1.2000
	COPPER	7	50.00	16.05	0.00	0	4.7125	4.6000	7.3000	4.3750
	IRON	5	60.00	1000	0.00	0	138,2000	79.5000	254.0000	152.5000
	LEAD	2	0.00	6.46	20.00	0	3.7200	3.6000	6.6000	2.3000
	LITHIUM	2	40.00	•	0.00	0	8.8600	9.1000	19.000	9.0333
	MAGNESIUM	2	.0.00	·	0.00	0	6624.0000	6390.0000	8100.0000	560.0000
	MANGANESE	5	0.00	1000	0.00	0	43.3600	37.000	63.0000	21.3000
	MERCURY	S	100.00	0.01	0.00	0	0.1000	0.1000	0.1667	0.0667
	MOLYBDENUM	2	100.00	•	0.00	0	4.8800	5.000	9.000	3.1000
	NICKEL	5	80.00	125	0.00	0	6.3500	5.3500	9.8000	4.3000
	POTASSIUM	S	0.00	•	0.00	0	13404.0000	14000.0000	16000.0000	2500.0000

Table 2: Total Metals (Eighth of fourteen pages)

					1	Number of				Inter-
Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	rercent Above Standard	Non-Detects Omitted	Mean	Median	85th Percentile	Quartile Range
	SELENTUM	S	100.00	10	0.00	0 .	1.1400	0.7333	2.6667	0.7333
t •	SILICON	9	0.00	•	00.00	0	4413.3333	4525.0000	5010.0000	500.0000
	SILVER	S	100.00	0.59	00.00	0	2.3800	2.5000	3.7500	2.1500
	SODIUM	2	0.00	•	00.00	0	30300.0000	32000.0000	36000.0000	5200.0000
83	STRONTIUM	5	00.00	•	0.00	0	169.6000	158.0000	230.0000	22.0000
	THALLIUM	လ	100.00	0.012	0.00	0	1.1400	0.9333	2.0000	0.7000
	TIN	S	100.00	•	0.00	0	10.1900	7.4000	19.4500	5.6000
	VANADIUM	75	40.00	•	0.00	0	5.7000	4.8000	9.7000	4.5000
	ZINC	25	20.00	45	60.00	0	45.9000	46.5000	59.9000	14.4000
	ALUMINUM	24	20.83	•	0.00	0	336.8292	241.5000	500.0000	420.0000
	ANTIMONY	25	100.00	14	0.00	0	12.0440	8.8000	21.1000	10.1667
	ARSFRIC	24	83.33	50	0.00	0	1.3625	1.1000	2.4000	1.1500
	RARTIM	77	8.33	. 1000	0.00	0	65.1312	66.7000	83.6000	15.9500
	BERYLL TUN	25	96.00	0.0076	4.00	0	0.5640	0.4500	0.9000	0.5000
84/85	CADMTUM	22	100.00	1.5	0.00	0	1.6795	1.4167	2.6250	1.2500
	CALCTUM	25	0.00		0.00	0	42540.0000	41800.0000	48000.0000	7800.0000
	CESTUM	26	84.62	•	0.00	0	200.3077	61.2500	437.5000	216.6667
<u> </u>	CHROMIUM	25	100.00	20	0.00	0	2.3220	2.0000	3.5000	1.7000
	COBALT	25	92.00	•	0.00	1	2.6646	1.9333	4.3000	2.5583
·	COPPER	25	52.00	16.05	0.00	0	5.4120	4.5000	10.4000	6.2000
	CVI 1.7									

Table 2: Total Metals (Winth of fourteen pages)

Jyte Sample Percent CAUCC Percent Non-Detects Ron-Detects Percent Above Non-Detects Hean Mc 25 32.00 1000 0.00 0 261.3640 20 UM 23 56.52 6.46 0.00 0 2.0435 2.0435 SILM 22 38.36 . 0.00 0 2.0435 2.0435 SILM 25 0.00 . 0.00 0 0 9133.6000 833.600 RY 26 0.00 . 0.00 0 0 0.1212 0 RY 26 0.00 . 0.00 0 0.1212 0 0 0.1212 0 0 0.1212 0 0 0 0.1212 0 0 0 0.1212 0 0 0 0 0.1212 0 0 0 0 0 0 0 0 0 0 0										·	
IRON 25 32.00 1000 0.00 0 20135 LEAD 23 56.52 6.46 0.00 0 2.0435 LITHIUM 22 38.36 . 0.00 1 14.3643 MAGNESIUM 25 0.00 . 0.00 0 9193.6000 836 MAGNESIUM 25 12.00 1000 0.00 0 99.520 7.9675 MAGNESIUM 25 12.00 1000 0.00 0 99.520 7.9675 MICKEL 25 90.91 . 0.00 2 7.9675 7.9675 NICKEL 25 90.91 . 0.00 2 7.9675 7.9675 NICKEL 25 90.91 . 0.00 0 9.146.8000 101 SELENIUM 25 90.00 . 0.00 0 1.6400 2.1521 SILUCR 2 90.00 . 0.00 0 2.1521 <th>Pond</th> <th>Analyte</th> <th>Sample</th> <th>Percent Non-Detect</th> <th>CWQCC</th> <th>Percent Above Standard</th> <th>Number of Non-Detects Omitted</th> <th>We ear</th> <th>Median</th> <th>85th Percentile</th> <th>Inter- Quartile Range</th>	Pond	Analyte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	We ear	Median	85th Percentile	Inter- Quartile Range
LEAD 23 56.52 6.46 0.00 0 2.0435 LITHIUM 22 38.36 . 0.00 1 14.3643 MAGNESIUM 25 0.00 . 0.00 0 9193.6000 838 MANGANESE 25 12.00 1000 0.00 0 9193.6000 73 MANGANESE 25 12.00 1000 0.00 0 9193.6200 73675 MERCURY 26 96.15 0.01 3.85 0 0 1212 NICKEL 25 90.91 . 0.00 2 7.9675 7.9675 NICKEL 25 90.91 . 0.00 0 9146.8000 1010 SELENIUM 25 4.00 . 0.00 0 4122.5000 40 SILUCH 8 0.00 . 0.00 0 2.1521 7.9675 SILUCH 25 9.09 . 0.00 0 2.1520 7		IRON	25	32.00	1000	0.00	11 1	261.3640	206.0000	515.0000	364.1000
LITHTUM 22 38.36 0.00 1 14.3643 MAGNESTUM 25 0.00 0.00 0.9193.6000 836 MAGNESTUM 25 12.00 1000 0.00 0 9193.6000 7 MARCURY 26 96.15 0.01 3.85 0 0.1212 7 MICKEL 25 90.91 1.25 0.00 2 7.9675 7 NICKEL 25 92.00 125 0.00 2 7.9675 7 NICKEL 25 92.00 125 0.00 0 1.6400 101 SELENTUM 25 80.00 10 0.00 4122.500 40 SILVER 24 91.67 0.59 8.33 0 2.1521 SILVER 24 91.67 0.59 8.33 0 2.55.000 2 STRAILLUM 25 96.00 0.00 0.00 0 255.000 2 TIN<		LEAD	23	56.52	6.46	00.00	0	2.0435	1.8000	3.6000	2.5857
MAGNESTUM 25 0.00 0.00 0.00 0.9193.6000 638 MANGANESE 25 12.00 1000 0.00 0 89.5220 7 MANGANESE 25 12.00 1000 0.00 0 89.5220 7 MERCURY 26 96.15 0.01 3.85 0 0.1212 7 MOLYBDENUM 22 90.91 1.25 0.00 2 7.9675 7 NICKEL 25 4.00 1.25 0.00 0 9146.8000 1010 SELENIUM 25 80.00 10 0.00 0 1.6400 2.1571 SILICON 8 0.00 0.00 0.00 0.164.800 1.6400 SILICON 8 0.00 0.00 0.00 0.162.00 2.1521 SILICON 25 9.00 0.00 0.00 0.122.000 2.55.000 STRONTIUM 25 96.00 0.00 0.00 0.255.000<		LITHIUM	22	38.36	•	0.00		14.3643	9.9000	32.2000	11.3667
MANGANESE 25 12.00 1000 0.00 0 89.5220 7 MERCURY 26 96.15 0.01 3.85 0 0.1212 7 MOLYBDENUM 22 90.91 0.01 3.85 0 0.1212 7 NICKEL 25 90.91 0.00 125 0.00 2 7.9675 7 NICKEL 25 92.00 125 0.00 0 9146.8000 101 SELENTUM 25 80.00 10 0.00 9146.8000 101 SILVER 24 91.67 0.59 8.33 0 2.1521 SODIUM 25 90.00 0.00 0.00 0.255.000 2 STRONTIUM 25 96.00 0.01 0.00 0.255.000 2 TIN 25 96.00 0.00 0.00 0.00 0.255.000 2 TIN 25 96.00 0.00 0.00 0.00 <t< th=""><th>·</th><th>MAGNESIUM</th><th>25</th><th>0.00</th><th>•</th><th>0.00</th><th>0</th><th>9193.6000</th><th>8380.0000</th><th>14200.0000</th><th>1030.0000</th></t<>	·	MAGNESIUM	25	0.00	•	0.00	0	9193.6000	8380.0000	14200.0000	1030.0000
MERCURY 26 96.15 0.01 3.85 0 0.1212 MOLYBDENUM 22 90.91 . 0.00 2 7.9675 NICKEL 25 92.00 125 0.00 0 5.9120 NICKEL 25 4.00 . 0.00 0 9146.8000 1010 SELENIUM 25 80.00 10 0.00 0 1.6400 400 SILICON 8 0.00 . 0.00 0 4122.5000 400 SILVER 24 91.67 0.59 8.33 0 2.1521 2.1521 SODIUM 25 0.00 . 0.00 0 255.0000 2 STRONTIUM 25 96.00 0.012 4.00 6 0.9605 7.3563 TIN 22 95.45 . 0.00 0 4.3760 255.0000 TIN 25 64.00 . 0.00 0 4.35740		MANGANESE	25	12.00	1000	0.00	0	89,5220	70.2000	175.0000	80.9000
MOLYBDENUM 22 90.91 0.00 2 7.9675 NICKEL 25 92.00 125 0.00 0 5.9120 NICKEL 25 92.00 125 0.00 0 9146.8000 1010 SELENIUM 25 80.00 10 0.00 0 4122.5000 400 SILICON 8 0.00 0.00 0 4122.5000 400 SILICON 8 0.00 0.00 0 2.1521 2.1521 SODIUM 25 9.09 0.00 0 2.1521 2.1521 THALLIUM 25 9.09 0.00 0 255.0000 2 TIN 22 95.05 0.00 0 4.3760 0 35.3240 THALLIUM 25 64.00 0.00 0 0.00 0 4.3760 0 0 0 0 0 0		MERCURY	26	96.15	0.01	3.85	0	0.1212	0.1000	0.1760	0.1020
NICKEL 25 92.00 125 0.00 0 5.9120 POTASSIUM 25 4.00 0.00 0 9146.8000 101 SELENIUM 25 80.00 10 0.00 0 4122.5000 40 SILICON 8 0.00 . 0.00 0 4122.5000 40 SILVER 24 91.67 0.59 8.33 0 2.1521 40 SODIUM 25 9.09 . 0.00 0 255.0000 2 STRONTIUM 25 96.00 0.012 4.00 6 255.0000 2 TIN 25 96.00 0.012 4.00 6 0.9605 2 VANADIUM 25 64.00 . 0.00 0 4.3760 35.240		MOLYBDENUM	22	90.91	•	0.00	2	7.9675	6.5000	15.1667	9.5583
POTASSIUM 25 4.00 0.00 0.00 0 146.8000 1010 SELENIUM 25 80.00 10 0.00 0.00 1.6400 402 SILICON 8 0.00 0.00 4122.5000 40 SILICON 8 0.00 0.00 4122.5000 40 SILICON 24 91.67 0.59 8.33 0 2.1521 40 SODIUM 25 9.09 0.00 0.00 255.0000 2 STRONTIUM 25 96.00 0.012 4.00 6 0.9605 2 TIN 25 95.45 0.00 1 12.3643 12.3643 VANADIUM 25 64.00 0.00 0.00 4.3760 35.370		NICKEL	25	92.00	125	0.00	0	5.9120	4.6000	10.0000	5.2500
H 25 80.00 10 0.00 0 1.6400 40 24 91.67 0.59 8.33 0 2.1521 25 0.00 0.00 0.00 0 33988.0000 330 H 25 96.00 0.012 4.00 6 0.9605 H 25 95.45 0.00 0 0 4.3760	B4/B5	POTASSIUM	25	4.00		0.00	0	9146.8000	10100.0000	11900.0000	3840.0000
LAM 25 91.67 0.59 8.33 0 4122.5000 400 LAM 25 0.00 0.00 0.00 0.33988.0000 330 LAM 25 96.00 0.012 4.00 6 0.55.0000 2 JAM 25 96.00 0.012 4.00 6 0.9605 2 JAM 25 95.45 0.00 1 12.3643 1 JAM 25 64.00 0.00 35.300 35.3240		SELENIUM	25	80.00	10	0.00	.0	1.6400	1.1429	3.2000	1.6190
24 91.67 0.59 8.33 0 2.1521 100 25 0.00 0.00 0.3398.0000 3308.0000 10H 22 9.09 0.00 0.255.0000 2 1H 25 96.00 0.012 4.00 6 0.9605 1M 25 64.00 0.00 0.00 4.3760		SILICON	8	00.00	•	0.00	0	4122.5000	4045.0000	4580.0000	630.0000
UM 25 0.00 0.00 0.00 0.255.0000 255.0000 2 IM 25 96.00 0.012 4.00 6 0.9605 2 IM 22 95.45 . 0.00 1 12.3643 1 IM 25 64.00 . 0.00 4.3760 35.340		SILVER	24	91.67	0.59	8.33	0	2.1521	1.7708	3.7500	2.1375
UM 22 9.09 0.00 0.00 0.5000 255.0000 2 JM 25 96.00 0.012 4.00 6 0.9605 JM 22 95.45 . 0.00 1 12.3643 JM 25 64.00 . 0.00 0 4.3760		SODIUM	25	0.00	•	0.00	0	33988.0000	33000.0000	44900.0000	9900.0000
1UM 25 96.00 0.012 4.00 6 0.9605 22 95.45 . 0.00 1 12.3643 01UM 25 64.00 . 0.00 0 4.3760		STRONTIUM	22	60.6	•	0.00	0	255.0000	228.5000	370.0000	40.000
11UN 25 64.00 0.00 1 12.3643		THALLIUM	25	96.00	0.012	4.00	60	0.9605	0.8000	2.0000	1.0000
31UN 25 64.00 0.00 0 4.3760		TIN	22	95.45	•	0.00		12.3643	10.000	19.4500	6.5000
36 20 00 34 3240	•	VANADIUM	25	64.00	•	0.00	0	4.3760	3.5000	6.7000	3.1000
43 50:00		ZINC	25	28.00	45	20.00	0	35.3240	36.8000	52.9000	19.6000

Table 2: Total Metals (Tenth of fourteen pages)

500	Analyte	Sample	Percent Non-Detect	CVQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	2	0.00	٠	0.00	0	531.2000	411.0000	1040.0000	180.0000
	ANTIMONY	ur.	80.00	14	20.00	0	15.7200	12.8000	32.2000	14.1000
	ARSFRIC	50	80.00	20	0.00	0	0.9600	0.9000	2.0000	0.4000
	RAPTIM	150	0.00	1000	0.00	0	91.3200	94.2000	120.0000	17.8000
	RFRYI I IIM	5	60.00	0.0076	40.00	0	0,6000	0.5000	1.2000	0.3333
	CADMILIN	2	100.00	1.5	0.00	0	1.8250	1.8250	2.3000	0.9500
	CALCTUM	S	0.00		0.00	0	44420.0000	46800.0000	48500.0000	3200.0000
	CESTUM	S	80.00	•	00.00	0	165.0000	125.0000	375.0000	200.0000
	CHROMTUM	150	100.00	50	00.00	0	1.8000	1.3667	2.7500	1.5833
ឆ	CORALT	· ·	100.00		00.00	0	1.8500	1.3333	3.6500	1.2000
	COPPER		100.00	16.05	0.00	0	2.2250	2.1333	3.1333	1.3833
	TRON	160	0.00	1000	40.00	0	904.8000	970.0000	1230.0000	370.0000
	1 FAD	2	0.00	6.46	0.00	0	2.9600	2.9000	5.4000	1.7000
	WILHTI		20.00		0.00	0	5.4000	4.4000	8.3000	2.0000
	MAGNESTUM	S	0.00		0.00	0	9036.0000	8540.0000	10100.0000	1700.0000
	MANGANECE		0.00	1000	0.00	0	136.5200	135.000	240.0000	105.0000
	MFRCIRY	- 10		0.01	0.00	0	0.1000	0.1000	0.1667	0.0667
	MOL YBDENUM	20			0.00	0	3.5900	2.8500	6.6000	3.0000
	NICKEL	2	100.00	125	0.00	0	3.8300	2.5000	7.3500	3.3500
	POTASSTUM		40.00		0.00	0	1524.0000	1366.6667	2300.0000	670.000

Table 2: Total Metals (Eleventh of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	SELENIUM	5	80.00	10	0.00	0	1.3300	1.3333	2.6667	0.9000
	SILICON	7	0.00	•	0.00	0	6815.7143	7060.0000	7330.0000	1380.0000
	SILVER	5	100.00	0.59	0.00	0	2.3800	2.5000	3.7500	2.1500
	SODIUM	5	00.00	•	0.00	0	22920.0000	22000.0000	26400.0000	5500.0000
: :	STRONTIUM	5	0.00		0.00	0	241.8000	241.0000	260.0000	28.0000
	THALLIUM	5	100.00	0.012	0.00	0	1.1400	0.9333	2.0000	0.7000
	TIN	5	100.00		0.00	0	9.2500	6.5000	19.4500	4.3667
	VANADIUM	5	80.00	·	0.00	0	2.7700	3.2500	3.9000	1.9000
	ZINC	5	100.00	. 45	0.00	0	2.6500	3.1000	3.6000	0.6500
	ALUMINUM	22	22.73	•	00.00	0	176.7250	141.5000	385.0000	177.5000
	ANTIMONY	22	100.00	14	00.00	0	12.3864	10.1667	22.2000	9.3333
	ARSENIC	22	36.36	50	0.00	0	2.4364	2.4500	4.4000	2.0000
	BARIUM	22	0.00	1000	0.00	0	83.8636	81.4000	90.3000	10.1000
	BERYLLIUM	22	95:45	0.0076	4.55	0	0.5955	0.5476	0.8571	0.4762
23	CADMIUM	21	95.24	1.5	4.76	0	1.7024	1.5000	2.7000	1.5000
	CALCIUM	22	0.00	•	0.00	0	45259.0909	41650.0000	56000.0000	16200.0000
	CESTUM	23	82.61		0.00	0	198.3913	50.000	400.0000	275.0000
	CHROMIUM	22	100.00	50	0.00	0	2.4091	2.0000	4.2000	1.8000
	COBALT	22	100.00	•	0.00	-	2.7881	2.222	4.5000	1.7000
	COPPER	22	72.73	16.05	0.00	0	4.1841	3.0000	7.6000	4.4500

Table 2: Total Metals (Twelfth of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartíle Range
	IRON	22	18.18	1000	4.55	0	272.0455	220.0000	466.0000	206.3000
	LEAD	22	68.18	6.46	18.18	0	5.5977	1.0750	7.4000	2.3444
	LITHIUM	18	38.89	•	0.00	1	13.5559	9.2000	16.6667	4.7000
•	MAGNESTUM	22	0.00	•	0.00	0	14304.0909	14350.0000	16400.0000	2600.0000
	MANGANESE	22	13.64	1000	0.00	0	241.4114	94.5500	629.0000	245.0000
	MERCURY	22	90.91	0.01	9.09	0	0.1205	0.1050	0.1800	0.1100
	MOL YBDENUM	18	88.89	•	0.00	2	9.2031	5.7500	17.3333	10.0417
	NICKEL	22	90.91	125	0.00	0	6.2773	4.5500	10.000	6.8000
23	POTASSIUM	22	4.55	•	0.00	0	6265.0000	6005.0000	7070.0000	1320.0000
	SELENIUN	22	81.82	10	4.55	0	1.8500	1.4643	2.8571	1.5000
	SILICON	1	0.00	•	0.00	0	910.0000	910.0000	910.000	0.000
	SILVER	22	95.45	0.59	4.55	0	2.0273	1.7946	3.1250	2.0000
	SODIUM	22	0.00	•	0.00	0	48968.1818	48600.0000	57300.0000	13900.0000
	STRONTIUM	20	10.00		0.00	٥	331.4500	326.0000	380.0000	44.5000
	THALLIUM	22	100.00	0.012	0.00	80	0.9250	0.6833	1.4500	0.9333
	TIN	. 18	100.00	•	0.00	-	12.1471	9.7500	15.0000	6.833
	VANADIUM	22	81.82	•	0.00	0	3.3091	2.1667	3.7500	1.9500
	ZINC	22	50.00	45	13.64	0	40.3932	6.8500	28.9000	14.8000

Table 2: Total Metals (Thirteenth of fourteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	We sa	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	17	23.53	•	0.00	0	2614.9059	301.0000	4090.0000	1283.3333
	ANTIMONY	17	82.35	14	17.65	1	19.2344	15.0000	30.000	15.9167
	ARSENIC	15	53.33	50	0.00	0	2.6400	2.4000	4.6000	1.8000
	BARIUM	17	0.00	1000	5.88	0	637.4118	564.0000	780.0000	69.0000
	BERYLLIUM	17	100.00	0.0076	0.00	0	0.7912	0.4500	1.2500	0.5714
	CADMIUM	16	81.25	1.5	18.75	-	2.5433	1.7000	3.9000	2.4000
· · · · · ·	CALCIUM	17	0.00	·	0.00	0	151411.7647	142000.0000	185000.0000	7000.0000
·	CESIUM	17	100.00	•	0.00		252.9375	193.7500	437.5000	307.2500
	CHROMIUM	17	70.59	50	0.00	0	8.9588	5.0000	21.8000	8.8000
LANDFILL	COBALT	16	50.00	•	0.00	3	7.4192	5.8000	15.9000	1.9333
	COPPER	17	70.59	16.05	11.76	0	12.0765	5.0000	16.6667	7.5000
	IRON	17	0.00	1000	100.00	0	78476.4706	75000.0000	84300.0000	12500.0000
	LEAD	17	23.53	6.46	17.65	0	4.1588	3.0000	9.5000	3.5000
	LITHIUM	17	23,53	•	0.00	0	46.2176	38.7000	75.0000	10.1000
	MAGNESIUM	17	0.00	•	0.00		34682.3529	33000.0000	41600.0000	2800.0000
:	MANGANESE	17	0.00	1000	100.00	0	1619.4118	1570.0000	1840.0000	260.0000
	MERCURY	17	94.12	0.01	5.88	0	0.1076	0.1000	0.1750	0.1000
	MOLYBDENUM	17	70.59	•	0.00	٠ د	10.0708	6.5833	21.3000	13.6083
	NICKEL	17	76.47	125	0.00	0	11.7500	9.8000	21.6000	9.2500
	POTASSIUM	17	5.88	•	0.00	Ō	6404.7059	6100.0000	7970.0000	850.0000

Table 2: Total Metals (Fourteenth of fourteenth

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	SELENIUM	17	94.12	10	0.00	1	2.1219	0.9500	3.7500	1.6250
	SILICON	10	0.00	•	0.00	0	10385.0000	10300.0000	11900.0000	1500.0000
	SILVER	17	70.59	0.59	29.41	0	5.6824	4.0000	11.1000	4.2333
I ANDETI I	SODIUM	17	0.00	٠	0.00	0	71005.8824	67100.0000	83300.0000	.11800.0000
באווסן זרך	STRONTIUM	17	11.76		0.00	0	905.4706	872.0000	1150.0000	95.0000
	THALLIUM	17	100.00	0.012	0.00	3	0.8679	0.7500	1.3333	0.5667
:	TIN	17	58.85	•	0.00	-1	49.2062	37.1000	75.0000	46.3250
	VANADIUM	17	41.18		0.00	0	25.0265	14.4000	27.3000	18.7000
	ZINC	17	0.00	45	100.00	0	3194.6471	2360.0000	3110.0000	440.0000

Table 3: Dissolved Metals (First of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQC C. Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	104	61.54	87	7.69	0	65.6784	31.4500	100.0000	39.9786
	ANTIMONY	88	77.94	•	0.00	80	15.4642	12.3000	23.7229	11.4071
	ARSENIC	99	95.45		0.00	С	1.5795	0.9345	2.5000	1.0545
	BARIUM	117	36.75	٠	0.00	0	51.1179	43.4000	67.8000	25.8500
	BERYLLIUM	61	90.16		0.00	0	1.4328	0.7692	2.1000	1.3487
	CADMIUM	49	95.92	٠	0.00	0	1.9582	1.8000	3.1818	1.6606
	CALCIUM	125	0.00	•	0.00	0	24639.5200	22800.0000	33900.0000	10800.0000
	CESTUM	69	89.86	•	0.00	47	82.7955	66.6667	200.0000	105.8333
	CHROMIUM	61	88.52		0.00	0	4.1869	2.9500	7.4571	3.7831
BACKGROUND	COBALT	58	98.28	٠	0.00	10	3.8104	2.1250	6.9375	3.3173
	COPPER	97	65.89	٠	0.00	0	7.2402	5.0000	13.8000	8.6500
	IRON	125	33.60	300	14.40	0	150.9772	69.9000	298.0000	145.7000
	LEAD	87	81.61	•	0.00	0	1.3534	0.9333	2.5000	1.4000
	LITHIUM	91	56.04	•	0.00	0	19.6725	4.9000	56.2500	25.1250
	MAGNESIUM	122	14.75	•	0.00	0	5056.9672	5035.0000	6780.0000	1950.0000
···	MANGANESE	121	25.62	50	17.36	0	38.5832	14.3000	56.6000	32.2500
	MERCURY	54	85.19	٠	0.00	0	0.1319	0.1170	0.1957	0.1149
	MOLYBDENUM	65	89.23	٠	0.00	မ	30.8475	17.0833	73.5294	50.6324
	NICKEL	57	94.74	٠	0.00	0	8.6860	5.5500	18.1818	10.0333
	POTASSIUM	97	37.11	•	00.00	0	1609.4227	1280.0000	2727.2727	1485.0000

Table 3: Dissolved Metals (Second of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	SELENIUM	57	98.25	•	0.00	-	1.6071	1.2250	2.6667	1.2429
	SILICON	42	4.76	•	0.00	0	5887.8571	4840.0000	10000.0000	5210.0000
	SILVER	70	90.00	•	0.00	5	2.6854	2.0667	4.4667	2.3000
	SODIUM	124	0.81	•	0.00	0	17485.8871	15600.0000	26100.0000	8800.0000
BACKGROUND	STRONTIUM	110	23.64	٠	0.00	0	210.4291	141.0000	333.3333	53.0000
	THALLIUM	69	97.10	٠	0.00	0	2.0217	1.2667	3.5714	1.7571
	TIN	75	78.67	٠	0.00	0	66.0113	27.4000	82.0513	56.5000
	VANADIUM	78	83.33	•	0.00	න	3.1667	2.3125	5.7375	2.4375
-	ZINC	111	40.54	•	0.00	0	17.5239	9.000	27.0000	16.1000
	ALUMINUM	ıı ıı	81.82	87	00.00	0	. 33.8455	21.6000	64.8000	49.6667
	ANTIMONY	13	100.00	•	0.00	0	9.3923	8.8000	20.4800	5.5733
	ARSENIC	12	16.67	•	0.00	0	4.0167	4.5500	5.9000	.4.0000
	BARIUM	13	0.00		0.00	0	43.6615	48.3000	60.0000	15.1000
·	BERYLL IUM	13	100.00	•	0.00	0	0.3769	0.3571	0.7143	0.2143
A1/A2	CADMIUM	12	91.67		0.00	0	1.3875	1.4250	2.2000	0.9125
	CALCIUM	13	0.00	•	0.00	0	27792.3077	25500.0000	43300.0000	12800.0000
	CESIUM	13	92.31	•	0.00	0	150.0000	62.5000	375.0000	212.5000
	CHROMIUM	13	92.31		0.00	0	1.6038	1.6400	2.7500	1.4333
	COBALT	13	100.00	•	0.00	0	1.5115	1.4286	2.8800	1.0095
	COPPER	12	75.00	•	00.00	0	2.7625	2.2900	4.5000	2.7883

Table 3: Dissolved Metals (Third of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	IRON	12	66.67	300	0.00	0	18.6500	16.0000	31,5000	18.9500
	LEAD	13	61.54	•	0.00	0	1.3462	0.9000	2.6000	1.5000
	LITHIUM	13	0.00		0.00	0	43.4385	44.1000	51.2000	11.9000
	MAGNESIUM	13	0.00	•	0.00	0	30269.2308	31000.0000	34100.0000	2900.0000
	MANGANESE	13	23.08	50	15.38	0	62.6077	15.3000	190.000	40.4000
	MERCURY	13	92.31		00.00	0	0.1415	0.1077	0.1846	0.0923
	MOLYBDENUM	13	69.23	-	0.00	0	3.6423	2.8500	6.8000	3.0667
	NICKEL	13	76.92		0.00	0	4.4077	3.3333	9.8000	2.9333
A1/A2	POTASSIUM	13	0.00	•	0.00	0	7676.9231	7800.0000	8600.0000	900.000
,	SELENIUM	13	100.00	•	0.00	0	1.2538	0.8800	2.8571	1.1429
	SILICON	14	21.43	٠	0.00	0	935.1071	478.0000	1840.0000	1195.5000
	SILVER	13	100.00		0.00	0	1.9462	1.6000	3.5714	1.8905
	SODIUM	13	0.00	•	0.00	0	173307.6923	180000.000	200000.000	22000.000
	STRONTIUM	13	0.00	•	0.00	0	345,5385	340.0000	. 442.0000	125.0000
	THALLIUM	13	100.00	·	0.00	6	3.0385	1.2667	9.000	2.2000
	TIN	13	100.00	•	0.00		7.4192	6.9333	11.8400	5.2133
	VANADIUM	13	61.54		0.00	0	2.6500	3.0000	3.8000	1.9667
	ZINC	11	100.00	•	0.00	0	3.0182	2.0000	7.5000	2.4000

Table 3: Dissolved Metals (Fourth of fourteen pages)

Pond Analyte Sample ALUMINUM 32 ANTIMONY 32 ARSENIC 32 BARIUM 32 CADMIUM 32 CALCIUM 32 CESIUM 28 CHROMIUM 32 CHROMIUM 32 COBALT 32 COPPER 32	set CWQCC 68.75 87 93.75 81.25 96.88 96.67	Percent Above Standard 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Number of Non-Detects Omitted O 0 0 0 0 0 0	Hean 23.8234 13.9141 1.4281 77.2453	Median 18.3333 10.6667 1.0625	85th Percentile	Inter- Quartile Range 19,1333
ALUMINUM ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CESIUM CESIUM CHRONIUM COPPER		0.00 0.	00000	23.8234 13.9141 1.4281 77.2453 0.5406	10.6667	שני טטטט	19,1333
ANTIMONY ARSENIC BARIUM CADMIUM CALCIUM CESIUM CESIUM CHRONIUM COPPER		0.00 0.00 0.00 0.00 0.00 0.00	00000	13.9141 1.4281 77.2453 0.5406	10.6667	2000	
ARSENIC BARIUM BERYLLIUM CADNIUM CALCIUM CESIUM CHRONIUM COPPER COPPER		0.00	0000	1.4281 77.2453 0.5406	1.0625	25.0000	13.1750
BARIUM CADIUM CALCIUM CESIUM CHRONIUM COBALT COPPER		0.00	000	0.5406		2.6000	1.3750
BERYLL IUM CADMIUM CALCIUM CESIUM CHROMIUM COBALT COPPER		00.00	0 0 0	0.5406	74.5000	91.4000	16.2000
CADNIUM CALCIUM CESIUM CHRONIUM COBALT COPPER		0.00	00	1 5300	0.4600	0.8400	0.4100
CALCIUM CESIUM CHRONIUM COBALT COPPER		0.00	0	+	1.4250	2.5385	1.3846
CESTUM CHRONIUM COBALT COPPER	•	0.00	•	43712.5000	44350.0000	51700.0000	10450.0000
CHROMIUM COBALT COPPER			+	90.0370	50.000	142.8571	75.0000
COBALT	100.00	0.00	0	2.4219	2.0250	4.5000	1.6321
	96.88	0.00		2.9742	1.8000	5.1429	2.3500
	78.13	0.00	0	5.0008	2.4857	10.7500	3.1071
IRON	73.33 300	0.00	0	14.0825	4.9500	28.2000	13.2500
LEAD 32	71.88	0.00	0	1.0125	0.8438	1.9000	1.0000
LITHIUM 25	36.00	0.00	2	12.1370	8.4000	14.5000	7.4000
MAGNESIUM 32	0.00	0.00	0	10944.3750	10500.0000	13600.0000	3665,0000
MANGANESE 35	20.00 50	17.14	0	28.5329	11.0000	54.5000	41.8000
MERCURY 33	84.85	0.00	0	0.3133	0.1143	0.1929	0.1071
MOLYBDENUM 25	84.00	0.00	2	9.0630	6.5000	14.8571	8.0429
NICKEL 32	90.63	0.00	0	6.6797	4.4875	14.2000	7.2929
POTASSIUM 32	3.13	0.00	0	6488.7500	7135.0000	9290.0000	4150.0000

Table 3: Dissolved Metals (Fifth of fourteen pages)

•		Sample	Percent	ээмэ	Percent Above	Number of Non-Detects			85+h	Inter-
Pond	Analyte	Size	Non-Detect	Standard	Standard	Omitted	Hean	Median	Percentile	Range
	SELENIUM	32	78.13		00.00	0	1.7969	1.5528	3.4000	1.6944
	SILICON	6	0.00	•	0.00	0	2426.6667	2230.0000	3260.0000	850,0000
	SILVER	32	96.88	•	00.00	0	2.0734	1.7222	3.7500	1.8389
	SODIUM	32	0.00	•	00.00	0	37703.1250	36250.0000	48400.0000	10650 0000
A3/A4	STRONTIUM	26	11.54		0.00	0	286.3077	274.0000	348.0000	90.000
	THALLIUM	31	100.00	•	0.00	0	1.8468	0.8571	3.3333	1.6500
-	TIN	24	95.83	•	0.00	2	13.3273	7.6000	25.0000	8.0000
	VANADIUM	32	84.38	·	0.00	-	2.5129	2.0000	4.2857	2.3714
	ZINC	32	46.88	·	0.00	0	17.8422	10.2500	30.9000	14.4500
	ALUMINUM	6	88.89	87	0.00	0 .	38.4889	33.8000	64.8000	21.6000
	ANTIMONY	12	91.67	•	00.00	0	12.1333	10.2950	20.4800	10.4800
-	ARSENIC	11	45.45	•	0.00	0	1.7636	1.1000	4.1000	2.9250
	BARIUM	11	45.45	•	0.00	0	34.8182	28.6000	70.6000	52.7500
	BERYLL IUM	11	100.00	i	0.00	0	0.3182	0.3125	0.5000	0.2500
81/82	CADMIUM	10	1.00.00		0.00	0	1.5800	1.5667	2.2000	0.7000
	CALCIUM	12	0.00	٠	00.00	O	20666.6667	18700.0000	26100.0000	7550.0000
	CESTUM	12	100.00	i	0.00	-	209.0909	200.0000	400.0000	300.000
	CHROMIUM	12	100.00	•	00.00	0	1.8750	1.7367	3.2800	1.6200
	COBALT	12	100.00	•	00.00	0	1.8375	1.4200	2.8800	1.2700
	COPPER	12	83.33	٠	00.00	0	2.5750	2.0150	3.7600	2.2375

Table 3: Dissolved Metals (Sixth of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	IRON	12	50.00	300	00.00	0	35.4750	32.4250	63.5000	24.7000
	LEAD	12	58.33	•	0.00	0	2.7625	0.8250	3.1500	1.1500
	LITHIUM	11	27.27	•	0.00	0	16.5455	12.7000	. 21.0000	9.3500
	MAGNESIUM	12	0.00	•	0.00	0	19891.6667	22500.0000	23800,0000	8750.0000
	MANGANESE	11	36.36	50	0.00	0	18.2091	5.9000	43.0000	30.7500
	MERCURY	12	100.00		00.0	0	0.1000	0.1000	0.1692	0.0923
	MOLYBDENUM	12	91.67	٠	0.00	0	7.4208	3.1167	8.8000	3.7833
	NICKEL	12	91.67	•	0.00	0	4.2542	3.7500	7.1333	3.6417
81/82	POTASSIUM	12	8.33	•	0.00	0	4991.6667	5230.0000	6790.0000	2055.0000
	SELENIUM	12	100.00	•	0.00	0	0.8667	0.7700	1.3333	0.4800
	SILICON	14	14.29	•	0.00	0	1112.3214	639.5000	2360.0000	1434.0000
	SILVER	12	100.00		0.00	0	2.1333	2.0875	4.0000	1.5583
1	SODIUM	12	8.33	(0.00	0	60254.1667	65000.0000	74400.0000	13250.0000
	STRONTIUM	12	8.33	•	0.00	0	269.0833	241.0000	295.0000	48.5000
	THALLIUM	12	91.67	•	0.00	0	1.0333	1.0000	1.5000	0.9083
	TIN	12	100.00	•	0.00	0	12.2583	8.2333	25.9333	7.6367
	VANADIUM	12	91.67		0.00	0	2.2167	1.9500	4.3333	1.5300
-	ZINC	12	83.33	•	0.00	0	4.2750	2.8125	7.0000	3.8250

Table 3: Dissolved Metals (Seventh of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	7	75.00	18	25.00	0	86.6000	54.0000	. 220.0000	118.8000
	ANTIMONY	S	80.00	•	0.00	0	13.5400	14.0000	21.1000	8.5333
	ARSENIC	S	100.00	•	0.00	0	0.8500	0.6000	2.0000	0.6500
	BARIUM	5	40.00	٠	0.00	0	13.6200	12.0000	30.0000	13.9500
* ·	BERYLLIUM	5	100.00	•	0.00	0	0.3700	0.3333	0.6667	0.1500
	CADMIUM	3	100.00	٠	0.00	0	1.8667	2.2000	2.3000	1.2000
	CALCIUM	S	0.00	•	0.00	0	33780.0000	34000.0000	43000.0000	6600.0000
	CESIUM	5	100.00	٠	0.00	0	163.0000	125.0000	375.0000	210.0000
	CHROMIUM	2	100.00	٠	0.00	0	2.0500	2.0500	3.4500	1.4167
83	COBALT	5	100.00	•	0.00	0	1.8500	1.3333	3.6500	1.2000
	COPPER	3	40.00	٠	0.00	0	5.8900	2.7000	17.0000	2.6000
	IRON	5	40.00	300	0.00	0	60.3800	37.0000	186.0000	36.0000
	LEAD	5	40.00	•	0.00	0	1.6700	1.5000	3.0000	2.4000
	LITHIUM	5	40.00	•	0.00	0	8.2200	7.6000	19.000	7.3333
•	MAGNESIUM	S	0.00	•	0.00	0	6616.0000	6510.0000	8500.0000	680.0000
	MANGANESE	S	0.00	50	20.00	0	40.3000	33.0000	66.0000	8.7000
	MERCURY	5	100.00	٠	0.00	0	0.1000	0.1000	0.1667	0.0667
	MOLYBDENUM	5	40.00	-	0.00	0	9.4300	6.6500	16.0000	10.1000
	NICKEL	5	100.00		0.00	0	4.9100	4.9000	9.8000	2.8500
	POTASSIUM	5	00.00		0.00	0	13126.0000	14100.0000	15000.0000	2100.0000

Table 3: Dissolved Metals (Elghth of fourteen pages)

					Percent	Number of				Inter-
Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Above Standard	Non-Detects Omitted	Mean	Median	85th Percentile	Quartile Range
	SELENIUM	5	100.00		00.00	0	1.1400	0.7333	2.6667	0.7333
	SILICON	9	00.00	•	0.00	0	4330.0000	4535.0000	4710.0000	550.0000
	SILVER	5	100.00		00.00	0	2.3800	2.5000	3.7500	2.1500
	SODIUM	5	00.00	•	00.00	0	30220.0000	31000.0000	36000.0000	6400.0000
B3	STRONTIUM	5	00.0	•	0.00	0	168.6000	156.0000	230.000	19.0000
	THALLIUM	4	100.00	•	0.00	0	0.6750	0.6500	0.9333	0.3833
	TIN	5	100.00	•	0.00	0	10.1900	7.4000	19.4500	5.6000
	VANADIUM	5	60.00		0.00	0	4.6500	3.8000	9.000	2.0500
	ZINC	5	20.00	٠	0.00	0	45.4600	55.8000	58.9000	7.0000
	ALUMINUM	53	54.72	87	7.55	0	35.9255	20.9091	61.0000	24.0000
	ANTIMONY	99	98.86	٠	0.00	0	11.4437	9.0288	21.1000	11.2806
	ARSENIC	54	81.48	٠	0.00	0	1.4139	1.2707	2.6667	1.2621
	BARIUM	53	3.77	•	0.00	0	63.7689	62.000	83.0000	12.4000
	BERYLLIUM	54	. 96.30	•	0.00		0.5598	0.4896	0.8542	0.5208
84/85	CADMIUM	45	95.56	•	0.00	0	1.5067	1.3846	2.4375	1.2933
	CALCIUM	54	0.00	•	0.00	0	41521.2963	41050.0000	46600.0000	6800.0000
	CESIUM	48	85.42	•	0.00	2	90.4935	45.3125	200.0000	63.3000
	CHROMIUM	54	94.44		0.00	0	2.4296	1.9412	4.6667	2.4412
	COBALT	54	. 87.04	•	0.00	-	2.6396	2.0000	5.0000	2.1333
	COPPER	55	59.26	•	0.00	0	5.0167	3.4667	8.9000	4.9333
	LULTER	,	, , , , ,				The state of the s			

Table 3: Dissolved Metals (Ninth of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	IRON	53	60.38	300	0.00	0	21.4396	11.5000	37.7000	20.8000
	LEAD	54	61.11		0.00	0	1.3537	0.9423	2.1500	1.3000
	LITHIUM	43	23.26		00.00	m	13.6313	8.9500	22.7000	8.1000
	MAGNESIUM	54	00.00	·	00.00	-	8693.7963	8485.0000	9380.0000	1090.0000
	MANGANESE	54	12.96	50	27.78	0	45.2954	15.4500	110.0000	58.4000
	MERCURY	53	96.23	·	00.00	0	0.1047	0.1020	0.1765	0.1020
	MOL YBDENUM.	43	51.16	•	0.00	3	12.7200	6.4500	13.2667	6.2750
	NICKEL	54	92.59	•	0.00	0	4.9694	3.7500	9.0000	4.0000
84/85	POTASSIUM	54	1.85	•	0.00	0	9559.0741	9525.0000	11400.0000	2550.0000
	SELENIUM	54	90.74	•	00.00	0	1.4806	1.0819	2.5000	. 1.2639
	SILICON	6	0.00	•	0.00	0	3910.0000	4150.0000	4320.0000	740.0000
	SILVER	54	98.15	•	0.00	0	1.8204	1.5817	3.3000	1.7917
	SODIUM	54	0.00	·	0.00	0	32759.2593	32600.0000	37200.0000	6000.0000
	STRONTIUM	42	9.52	٠	0.00	0	243.5476	230.0000	268.0000	40.0000
	THALLIUM	53	96.23	•	00.00	0	2:2132	0.9000	4.2857	1.5929
,	TIN	43	83.72	٠	0.00	3	27.3813	9.0476	22.5250	7.7583
	VANADIUM	54	51.85	•	0.00	-	3.4698	3.5000	5.4000	2.5455
	ZINC	53	15.09	·	0.00	0	27.6302	23.8000	44.2000	18.5000

Table 3: Dissolved Metals (Tenth of fourteen pages)

Pond	َ Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Hean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	4	100.00	87	0.00	0	33.7250	28.9500	72.0000	40.5500
	ANTIMONY	5	80.00	•	0.00	0	12.9400	11.0000	21.1000	8.5333
	ARSENIC	+	100.00	•	0.00	0	0.9750	0.8000	2.0000	1.0500
	BARIUM	5	0.00	•	0.00	0	85.8000	88.6000	110.0000	12.6000
	BERYLLIUM	5	100.00	•	0.00	0	0.3600	0.3333	0.6667	0.0333
	САВМІ ОМ	9	100.00	-	0.00	0	1.7667	1.6500	2.3000	0.9500
	CALCIUM	5	0.00	·	0.00	0	46120.0000	47200.0000	48800.0000	3400.0000
	CESTUM	5	80.00	•	0.00	0	173.0000	125.0000	375.0000	160.0000
	CHROMIUM	5	100.00	•	0.00	0	1.7700	1.3667	2.7500	1.4000
ដ	COBALT	5	100.00	•	0.00	0	1.8500	1.3333	3.6500	1.2000
	COPPER	5	60.00	•	0.00	0	4.4500	2.7000	9.7000	4.1500
	IRON	5	40.00	300	0.00	0	35.5300	36.0000	67.0000	24.7000
	LEAD	5	60.00	•	0.00	0	1.0100	0.7000	1.8000	1.1000
	LITHIUM	5	20.00	•	0.00	0	6.4700	6.8000	10.2000	2.2000
	MAGNESIUM	5	0.00	•	0.00	0	9284.0000	9400.0000	10200.0000	1490.0000
	MANGANESE	ဢ	0.00	20	80.00	0	77.0400	92.0000	114.0000	41.2000
	MERCURY	2	100.00	٠	0.00	0	0.1000	0.1000	0.1667	0.0667
	MOLYBDENUM	S	100.00	٠	0.00	0	2.8400	2.0000	5.0000	1.9000
	NICKEL	S	100.00	•	0.00	0	3.8300	2.5000	7.3500	3.3500
	POTASSIUM	5	40.00	٠	0.00	0	1522.0000	1600.0000	2100.0000	493.3333

Table 3: Dissolved Metals (Eleventh of fourteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	SELENIUM	5	80.00	٠	00.00	0	1.2700	1.2000	2.6667	0.7333
. •	SILICON	7	0.00	•	0.00	0	6058.5714	6270.0000	6810.0000	1450.0000
	SILVER	5	100.00	•	0.00	0	2.3800	2.5000	3.7500	2.1500
	SODIUM	5	00.00	•	0.00	0	23420.0000	24000.0000	27000.0000	6000.0000
5	STRONTIUM	5	00.00	•	0.00	0	245.6000	250.0000	270.000	15.0000
3	THALLIUM	4	100.00	•	0.00	0	0.6750	0.6500	0.9333	0.3833
	TIN	5	100.00	•	0.00	0	9.2500	6.5000	19.4500	4.3667
	VANADIUM	5	100.00	•	0.00	0	2.1900	1.9000	3.8000	1.9167
-	ZINC	5	80.00	•	0.00	0	3.6200	2.5000	9.6000	2.1000
	ALUMINUM	51	52.94	87	1.96	0	35.2284	17.0500	35.5000	22.6000
	ANTIMONY	52	84.62	•	0.00	0	12.4058	10.0500	12.2727	11.7045
	ARSENIC	25	53.85	•	0.00	0	2.0817	2.0000	3.5000	1.9500
	BARIUM	25	1.92	•	0.00	0	72.5135	72.1000	87.1000	16.2000
	BERYLLIUM	52	100.00	•	0.00	0	0.5500	0.5100	0.8800	0.5000
23	CADMIUM	46	97.83		0.00	0	1.5033	1.3810	2.5000	1.2857
	CALCIUM	25	00.00	•	0.00	0	41379.8077	40000.0000	54000.0000	15350.0000
·	CESIUM	44	81.82	•	0.00	2	77.1476	39.7368	166.6667	58.9474
	CHROMIUM	52	96.15	•	0.00	0	2.3856	1.8831	4.3750	2.3030
	COBALT	52	100.00	•	0.00	1	2.2784	1.7333	4.0000	2.0000
	COPPER	52	55.77	•	0.00	0	6.5519	3.6667	12.5000	7.0667

Table 3: Dissolved Metals (Twelfth of fourteen pages)

Die 3. Disser	(adher nect.									1	
elfth of tour	rteen pages/					Hi-then of			4+	Ouartile	
				JOON	Percent Above	Non-Detects	200	Median	Percent118	Range	
		Sample	Percent Non-Detect	Standard	Standard	Omitted		£ 7333	50.0000	27.6000	
Pond	Analyte			300	0.00	0	21.0147	3.7.5	0000	1 2690	
	IRON	21	60.78	200	8	0	1.1269	0.8448	2.0000		
	4	52	69.23	•	9		12 2500	10.0000	13.0000	3.4000	
	LEAU	9	23.08	٠	0.00	2	16.6300	0000 03071	16900.0000	2250.0000	
	LITHIUM	S	8		0.00	0	14909.6154	14030.0000	0000	149.2500	
	MAGNESIUM	25	0.00		2 2	0	120.0654	57.5000	193.000		
	MANCANECE	25	9.65	2		6	0.1198	0.1089	0.1867	0.1111	_
	TOTAL CONTRACT	5	92.00		9.0			4.4000	14.4444	6.7000	_
	MERCURY	1	30 50	-	0.00	2	1.4/04	\downarrow	L	4.7159	_
	MOL YBDENUM	88	82.03		1	0	4.9856	3.0909	1	丨	_
	13/0411	52	96.15		3		6217 0192	6220.0000	7180.0000	1122.5000	7
5	MICHEL	3	1.92		0.00		0	-	2.7368	1.2697	П
3	POTASSIUM	7	1	-	00.00		1.5304	1		286 0000	_
	CFI FNIUM	51	90.20				949.000	811.0000	0 1370.0000	3	T
	1000	_	0.00	0	0.00			1.5625	3.2000	1.6775	آي
	SILICON		80 80	œ	0.00		0	╀	59400,0000	0 11500.0000	٦
	SILVER	× -			0.00	0.	0 51372.1154	7	1	C C C C C C C C C C C C C C C C C C C	- c
	MITTUR	52	2 0.00	g			338.5976	331.0000	00 402.0000	1	T
		-	1 7.32	32	0.00	20	_	1.1000	00 6.0000	2.5952	اي
	STRONITOR		96.15	15	ö	0.00	0	L	23.9000	9.8889	စ္က
	THALLIUM	1	\downarrow		6	0.00	2 13.7/9/	1	L	2.5000	8
	HIL		39 82.03	CO	6	90	1 2.2588	2.0000	\downarrow		[
1	MILLONAN		52 78.	78.85		200	0 11.9275	3.1333	333 14.1000	1.233	3
	2000	_	51 56	56.86	•	0.00					
	ZINC										

Table 3: Dissolved Metals (Thirteenth of fourteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	ALUMINUM	16	87.50	87	0.00	0	40.2062	20.9250	73.8000	46.7500
	ANTIMONY	16	87.50	•	0.00	1	18.9833	15.0000	30.000	17.1333
	ARSENIC	14	64.29		0.00	0	2.2643	1.5000	4.6000	1.7667
	BARIUM	16	0.00	٠	0.00	0	560.3750	570.0000	641.0000	84.0000
	BERYLLIUM	14	98.86	٠	0.00	0	1.2679	0.5250	2.5000	0.9167
	CADMIUM	16	93.75	•	0.00	-	2.0633	1.6500	3,3333	1.7167
	CALCIUM	16	00.00	•	0.00	0	148125.000	141500.000	163000.000	22500.000
	CESTUM	16	93.75	•	0.00	S	167.1364	100.0000	357.1429	214.2857
	CHROMIUM	16	93.75		0.00	0	5.6000	2.8250	10.2500	7.3333
LANDFILL	COBALT	16	62.50	•	0.00	က	5.3808	4.7000	12.6000	4.2333
	COPPER	16	87.50	٠	0.00	0	5.3375	3.6500	10.000	5.2917
	IRON	16	00.00	300	100.00	0	68293.7500	69200.0000	78600.0000	13000.0000
	LEAD	16	75.00	•	0.00	0	2.5812	0.8417	3.8000	1.8917
	LITHIUM	16	25.00	•	0.00	0	45.8844	36.9500	75.0000	11.5000
·	MAGNESIUM	16	0.00	•	0.00	0	34400.0000	32750.0000	40600.0000	7650.0000
	MANGANESE	16	0.00	50	100.00	0	1568.7500	1500.0000	1740.0000	300.0000
	MERCURY	16	100.00	٠	0.00	0	0.0969	0.0938	0.1625	0.0938
	MOL YBDENUM	16	87.50	•	0.00	1	17.0600	6.5000	40.0000	17.1500
	NICKEL	16	81.25	•	0.00	0	10.2125	7.2417	16.7000	9.6917
	POTASSIUM	16	12.50	•	00.00	0	5575.0000	5835.0000	6370.0000	1235.0000

Table 3: Dissolved Metals (Fourteenth of fourteen

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non-Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	SELENIUM	15	100.00	•	0.00	-	1.3571	1.1000	2.5000	0.8500
	SILICON	11	00.00	٠	0.00	0	10000.0000	10300.0000	10900.0000	1230.0000
	SILVER	16	93.75	٠	0.00		3.6833	2.5000	5.0000	2.8667
LANDFILL	SODIUM	16	0.00		0.00	0	71400.0000	67200.0000	83600.0000	15500.0000
	STRONTIUM	16	6.25	•	00.00	0	927.1875	924.0000	1130.0000	181.0000
	THALLIUM	16	100,00	•	00.00	0	1.8094	1.1667	2.5000	1.2917
	TIN	16	68.75	٠	0.00	0	85.4844	25.3667	183.0000	55.5167
	VANADIUM	16	68.75	•	0.00	3	5.6115	3.5000	9.5500	3.9667
	ZINC	16	0.00	٠	0.00	0	1637.4375	1590.0000	2260.0000	785.0000

Table 4: Water Quality Parameters (First of thirteen pages)

	•					4				
Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
	BICARBONATE	55	00.00	•	0.00	0	89.9073	86.0000	130.0000	54.0000
-	BICARBONATE AS CACO3	73	00.00	•	0.00	0	89.4890	90.000	115.0000	30.000
	CARBONATE	58	98.28	•	0.00	0	2.6468	2.5000	4.4118	2.7451
	CARBONATE AS CACO3	70	70.00	•	0.00	20	4.8700	4.4318	8.4091	5.6818
	CHLORIDE	127	6.30	250000	0.00	0	17.0758	12.0000	29.0000	16.4000
	CYANIDE	106	97.17	5	0.00	0	0.0061	0.0048	0.0098	0.0065
	DISSOLVED ORGANIC CARBON	6	0.00	•	00.00	0	5.7778	5.0000	8.0000	3.0000
	FLUORIDE	76	7.89	2000	0.00	0	0.3393	0.3200	0.4300	0.0950
	NITRATE	2	50.00	10000	0.00	0	0.1500	0.1500	0.2500	0.2000
BACKGROUND	NITRATE/NITRITE	125	. 42.40	10000	0.00	0	0.3893	0.1000	0.8700	0.5079
	NITRITE	75	96.00	200	0.00	0	0.0116	0.0100	0.0179	0.0108
	OIL AND GREASE	80	73.75	•	0.00	0	2.9937	2.6750	4.7000	3.1583
	ORTHOPHOSPHATE	67	94.03	•	0.00	0	0.0211	0.0170	0.0404	0.0277
	PHOSPHORUS	76	61.84	•	0.00	0	0.0372	0.0262	0.0600	0.0317
	SILICA	24	8.33	•	0.00	0	8.0171	4.7000	12.0000	7.9000
	SULFATE	127	1.57	250000	0.00	0	19.3929	17.8000	27.0000	12.0000
	SULFIDE	55	89.09	2	9.03	\$	0.7800	0.5667	0.9556	0.5556
	TOTAL DISSOLVED SOLIDS	125	0.00	٠	0.00	0	174.168	160.000	212.0000	50.000
·	TOTAL ORGANIC CARBON	19	0.00	•	0.00	0	6.5737	6.0000	11.3000	5.1000
	TOTAL SUSPENDED SOLIDS	132	37.12	•	0.00	0	21.1174	7.0000	26.0000	12.0455

Table 4: Water Quality Parameters (Second of thirteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile- Range
<u></u>	AMMONIA	10	10.00	9	0.00	0	0.4850	0.3850	0.5200	0.2200
	BICARBONATE AS CACO3	14	0.00		0.00	0	183.057	194.500	253.0000	59.0000
	CARBONATE AS CACO3	14	7.14	•	0.00	0	75.3714	75.4500	85.8000	41.4000
	CHLORIDE	14	0.00	250000	0.00	0	129.143	127.500	142.0000	16.0000
	CYANIDE	14	100.00	5	0.00	0	0.0061	0.0054	0.0092	0.0050
-	DISSOLVED ORGANIC CARBON	9	0.00	•	0.00	0	16.1667	18.5000	17.0000	2.0000
` ,	FLUORIDE	12	0.00	2000	0.00	0.	2.8833	2.7500	3.6000	0.4500
	HEXAVALENT CHROMIUM	8	100.00	11	0.00	0	0.0094	0.0088	0.0150	0.0088
	NITRATE/NITRITE	14	57.14	10000	0.00	0	0.1029	0.0833	0.1800	0.0756
A1/A2	NITRITE	14	92.86	200	0.00	0	0.0114	0.0107	0.0171	0.0100
	OIL AND GREASE	14	78.57	•	0.00	0	3.9000	3.0500	6.1000	1.2500
	ORTHOPHOSPHATE	14	64.29		0.00	0	0.0460	0.0375	0.0850	0.0640
	PHOSPHORUS	14	21.43	•	0.00	0	0.0825	0.0745	0.1200	0.0700
	SULFATE	14	0.00	250000	0.00	0	163.0786	153.5000	212.0000	116.0000
	SULFIDE	14	100.00	2	0.00	0	0.5000	0.5000	0.8000	0.4667
	TOTAL DISSOLVED SOLIDS	14	0.00	٠	0.00	٥	703.8571	694.0000	782.0000	68.0000
	TOTAL ORGANIC CARBON	9	0.00		0.00	0	19.1667	19.5000	21.0000	2.0000
	TOTAL SUSPENDED SOLIDS	14	28.57	٠	0.00	0	8.7143	7.0000	14.0000	8.0000

Table 4: Water Quality Parameters (Third of thirteen pages)

Pond	, Analyte	Sample	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
-	ALKALINITY AS CACO3	1	100.00	•	0.00	0	5.0000	5.0000	5.0000	0.000
	AMMONIA	95	15.79	9	0.00	0	2.5453	1.3000	5.5000	3.6800
	BICARBONATE	25	0.00	•	0.00	0	106.7600	108.0000	125.0000	30.000
	BICARBONATE AS CACO3	31	3.23	•	0.00	0	104.4774	112.0000	135.0000	40.000
	CARBONATE AS CACO3	35	97.14	•	0.00	0	5.5429	4.6875	8.4375	5.0000
	CHLORIDE	53	0.00	250000	0.00		49.5264	48.0000	61.0000	18.0000
	CYANIDE	13	92.31	2	0.00	0	2.8731	0.0150	10.000	5.5607
	DISSOLVED ORGANIC CARBON	3	0.00	٠	0.00	0	5.0000	5.0000	8,0000	2.0000
	FLUORIDE	55	43.64	2000	0.00	0	0.4077	0.4400	0.6000	0.2200
A3/A4	HEXAVALENT CHROMIUM	30	100.00	11	0.00	1	0.0053	0.0054	0.0088	0.0048
	HYDROGEN SULFIDE	1	100.00	•	0.0	0	0.5000	0.5000	0.5000	0.000
	NITRATE	4	0.00	10000	0.00	0	110.7000	4.9000	430.000	214.6000
	NITRATE/NITRITE	107	0.93	10000	0.00	0	2.9416	3.2000	4.2000	2.1000
	NITRITE	55	7.27	200	0.00	0	0.1247	0.0700	0.1800	0.1000
	OIL AND GREASE	17	82.35		0.00	0	5.1588	3.0500	6.3000	2.0000
	ORTHOPHOSPHATE	44	70.45	•	0.00	0	0.0315	0.0172	0.0600	0.0341
	PHOSPHATE	31	54.84		0.00	0	0.0355	0.0200	0.0660	0.0513
	PHOSPHORUS	16	50.00	•	0.00	0	0.0669	0.0417	0.1000	0.0700

Table 4: Water Quality Parameters (Fourth of thirteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non Detects Omitted	Mean	Median	85th Percentile	Inter Quartile Range
	SILICON	10	0.00	•	00.00	0	4.0200	4.0000	4.2000	0.000
	SULFATE	53	0.00	250000	0.00	0	57.2660	54.0000	68.0000	20.000
	SULFIDE	6	100.00	2	0.00	0	0.5000	0.5000	0.8000	0.4000
A3/A4	TOTAL ALKALINITY	46	2.17		00.0	0	104.0326	105.0000	125.0000	35.0000
	TOTAL DISSOLVED SOLIDS	55	0.00		0.00	0	320.5091	300.000	350.0000	80.000
	TOTAL ORGANIC CARBON	3	00.00		0.00	0	6.6667	7.0000	8.0000	3.0000
	TOTAL SUSPENDED SOLIDS	383	46.48		0.00	0	8.5581	4.6094	16.0000	9.0469
	AMMONIA	10	0.00	09	0.00	0	0.7100	0.4050	0.7800	0.3400
	BICARBONATE AS CACO3	14	00.00	•	0.00	0	98.7786	89.8000	148.0000	76.5000
	CARBONATE AS CACO3	14	21.43	•	0.00	0	63.1788	58,0000	106.0000	87.7000
	CHLORIDE	14	0.00	250000	0.00	0	76.4500	81.2500	88.6000	15.9000
	CYANIDE	14	100.00	5	0.00	0	0.0075	0.0069	0.0125	0.0063
81/82	DISSOLVED ORGANIC CARBON	9	0.00	•	0.00	0	13.3333	14.0000	18.000	3.000
	FLUORIDE	14	0.00	2000	0.00	0	0.9750	1.0000	1.1000	0.1800
	HEXAVALENT CHROMIUM	8	100.00	11	0.00	0	0.0100	0.0100	0.0158	0.0089
	HYDROGEN SULFIDE	2	100.00		0.00	°	0.5000	0.5000	0.6667	0.3333
	NITRAȚE/NITRITE	14	85.71	10000	0.00	•	0.071	0.0577	0.0923	0.0538
	NITRITE	14	85.71	200	0.00	0	0.0164	0.0115	-0. 0185	0.0108

Table 4: Water Quality Parameters (Fifth of thirteen pages)

		Sample	Percent	CMOCC	Percent Above Standard	Number of Non_Detects Omitted	Mean	Median	85th Percentile	Inter- Quartile Range
Pond	Analyte	9215	מסוים הפרפיר	2000	6	0	3.2821	2.8750	3.3600	0.6000
	OIL AND GREASE	4 :	35.00		9	0	0.0589	0.0417	0.1000	0.0598
•	ORTHOPHOSPHATE	* '	97.14		0.00	0	0.1415	0.1415	0.1900	0.0970
	PHOSPHAIL	, ;	20.71		0.00	0	0.1120	0.1085	0.1700	0.0830
	PHOSPHORUS	,	0.00		0.00	0	23.7000	23.7000	28.7000	10.0000
81/82	SOUTH SULFAIE	14	0.00	250000	0.00	0.	21.9786	21.4000	30.9000	14.1000
	SULFAIE	7.	100.00		0.00	0	0.5000	0.5000	0.8000	0.4687
	SULTIDE		00 0		0.00	·	336.2857	319.0000	374.0000	92.000
	TOTAL DISSULVED SUCTOS	"	00 0		0.00	0	16.8333	16.5000	22.0000	7.0000
	TOTAL DRIGARIC CARBON	2	50.00		0.00	0	6.5357	5.1875	13.0000	6.5000
	101AL SUSTENDED SOCIOS					•	_	10 3000	23.0000	19.3000
	AMMONIA	9	0.00	8	0.00		13.3333	4		
	BICADRONATE AS CACO3	9	0.00	•	0.00	0	100.6167	111.0000	142.0000	40.3000
.	DICAMBER AS CACOS	"	100.00		0.00	0	5.0000	5.0000	8.5714	4.2857
	CARBONAIC AS CACOS) '	6	350000	6	0	55.9500	59.2000	64.6000	8.3000
	CHLORIDE	ı '	5 9	,	00.0	0	0.0050	0.0050	0.0086	0.0043
	CYANIDE) °			0.00		0 7.3333	8,0000	9.000	4.0000
83	DISSOLVED URGANIC CARBON	2		2000			0 0.3467	0.3350	0.4200	0.0900
	FLUORIDE	,	100.001	_	0.00		0 0.0100	0.0100	0.0150	0.0100
	HEXAVALENI CHRUMIUM	1	00 001		_		0 0.5000	0.5000	0.5000	0.000
	HYDROGEN SULFIDE	'		00001			0 7.3200	9.7000	9.6000	1.9000
	NITRATE/NITRITE		8 6	_			0 0.6363	3 0.5450	1.4000	0.7475
	NITRITE	-	0.00							

Table 4: Water Quality Parameters (Sixth of thirteen pages)

Pond	Analyte	Sample	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non Detects Omitted	Hean	Median	85th Percentile	Inter Quartile Range
	OIL AND GREASE	9	83.33	٠	0.00	0	5.1750	3.0750	17.2000	0.8000
	ORTHOPHOSPHATE	9	0.00	•	0.00	0	0.2750	0.2850	0.3500	0.1000
-	PHOSPHATE	1	00.00	•	0.00	0	0.2800	0.2800	0.2800	0.0000
	PHOSPHORUS	ဖ	16.67	•	0.00	0	0.3075	0.3100	0.5100	0.1900
	SODIUM SULFATE	-	0.00		0.00	0	67.5000	67.5000	67.5000	0.000
8	SULFATE	စ	0.00	250000	0.00	0	77.1500	75.0500	96.6000	17.0000
	SULFIDE	မ	100.00	2-	0.00	0	0.5000	0.5000	0.8571	0.4286
	TOTAL DISSOLVED SOLIDS	9	0.00	•	0.00	0	282.3333	285.0000	314.0000	44.0000
,	TOTAL ORGANIC CARBON	3	0.00	٠	0.00	0	13.0000	12.0000	19.000	11.0000
	TOTAL SUSPENDED SOLIDS	9	. 66.67	•	0.00	0	3.5000	3.5000	6.0000	3.0000
	2,3,7,8-1000	9	100.00	•	0.00	0	0.5675	0.5375	1.0500	0.4900
	AMMONIA	85	3.53	09	0.00	0	6.8512	5.9000	11.1000	6.0000
	BICARBONATE	36	0.00	٠	0.00	0	109.2500	106.5000	135.000	24.5000
	BICARBONATE AS CACO3	38	2.63	٠	0.00	0	96.2789	97.5000	120.0000	31.6000
	CARBONATE AS CACO3	46	100.00	•	0.00	0	4.7935	4.6591	8.4031	5.0000
64/65	CHLORIDE	67	00.00	250000	0.00	0	48.0313	43.0000	62.000	20.0000
	CYANIDE	16	68.75	S	31.25	0	9.3591	3.7500	29.4000	14.7433
	DISSOLVED ORGANIC CARBON	17	0.00	•	0.00	0	6.2353	6.0000	7.0000	1.0000
	FLUORIDE	68	47.06	2000	0.00	0	0.3956	0.4297	0.6000	0.2972
·	HEXAVALENT CHROMIUM	51	98.04	11	0.00	0	0.0055	0.0053	0.0089	0.0052

Table 4: Water Quality Parameters (Seventh of thirteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Percent Above Standard	Number of Non Detects Omitted	Hean	Median	85th Percentile	Inter- Quartile Range
-	HYDROGEN SULFIDE	1	100.00	•	00.00	0	0.5000	0.5000	0.5000	0.000
	NITRATE	3	0.00	10000	0.00	.0	2.7667	2.6000	3.2000	0.7000
_ -	NITRATE/NITRITE	94	3.19	10000	0.00	0	3.3593	3.2000	4.3000	1.4000
	·NITRITE	64	00.00	200	00.00	0	0.4095	0.3350	0.6800	0.3800
•	OIL AND GREASE	30	83.33	•	0.00	0	4.1817	2.7974	5.4000	2.2105
	ORTHOPHOSPHATE	45	17.78	•	0.00	0	0.0941	0.0800	0.1600	0.0967
	PHOSPHATE	42	42.86		0.00	0	0.1207	0.0350	0.2900	0.1642
	PHOSPHORUS	30	6.67	•	0.00	0	0.1773	0.1700	0.2600	0.1300
B4/B5	SILICA, DISSOLVED	2	0.00	•	0.00	0	6.2000	6.2000	9.000	5.6000
	SILICON	14	00.00	•	0.00	0	4.2857	4.0000	5.0000	1.0000
	SODIUM SULFATE	1	00.00		0.00	0	69.9000	69.9000	69.9000	0.000
	SULFATE	99	00.00	250000	0.00	٥	58.3333	58.5000	74.0000	24.0000
	SULFIDE	20	95.00	2	0.00	0	0.5300	0.5526	. 0.8684	0.4737
	TOTAL ALKALINITY	09	00.00	•	0.00	0	105.8750	102.0000	133.5000	22.5000
	TOTAL DISSOLVED SOLIDS	70	0.00	ì	0.00	0	348.0429	279.0000	340.0000	80,0000
	TOTAL ORGANIC CARBON	17	0.00	•	0.00	0	8.4118	8.0000	10.000	1.0000
	TOTAL SUSPENDED SOLIDS	242	13.64	٠	00.00	0	16.4649	11.2500	30.000	15.000

Table 4: Water Quality Parameters (Eighth of thirteen pages)

Pond	Analyte	Sample Size	Percent Non-Detect	CWQCC	Percent Above Standard	Number of Non_Detects Omitted	Hean	Median	85th Percentile	Inter- Quartile Range
	ALKALINITY AS CACO3		00.00	·	0.00	0	165.0000	165.0000	165.0000	0.000
	AMMONIA	7	28.57	90	0.00	0	0.3186	0.2600	0.4100	0.2767
	BICARBONATE	1	0.00	•	0.00	0	165.0000	165.0000	165.0000	0.000
٠	BICARBONATE AS CACO3	ၒ	0.00		0.00	0	141.0167	153.0000	194.0000	44.0000
	CARBONATE AS CACO3	7	85.71		0.00	0	6.2143	5.7143	8.5714	5.7143
	CHLORIDE	7	00.00	250000	0.00	0	24.9000	24.6000	29.3000	8.7000
* = *	CYANIDE	7	100.00	5	0.00	0	0.0071	0.0060	0.0100	0.0060
	DISSOLVED ORGANIC CARBON	4	0.00		0.00	0	5.5000	5.5000	7.0000	2.0000
	FLUORIDE	7	0.00	2000	0.00	0	0.4529	0.4500	0.4900	0.0700
	HEXAVALENT CHROMIUM	4	100.00	11	0.00	0	0.0088	0.0075	0.0150	0.0075
ដ	NITRATE/NITRITE	7	100.00	10000	0.00	0	0.0500	0.0500	0.0750	0.0500
•	NITRITE	7	100.00	200	0.00	0	0.0100	0.0100	0.0150	0.0100
	OIL AND GREASE	7	85.71	•	0.00	0	3.4714	3.0500	3.3000	0.6500
<u>.</u>	ORTHOPHOSPHATE	7	85.71	•	0.00	0	0.0294	0.0286	0.0429	0.0286
	PHOSPHORUS	9	50.00	•	0.00	0	0.0388	0.0438	0.0540	0.0200
	SULFATE	7	0.00	250000	0.00	0	17.9286	15.8000	23.6000	10.1000
•	SULFIDE	7	85.71	2	0.00	0	0.4829	0.5000	0.6667	0.3867
	TOTAL DISSOLVED SOLIDS	7	0.00	•	0.00	0	240.2857	256.0000	256.0000	36.0000
	TOTAL DRGANIC CARBON	4	0.00	٠	0.00	0	8.2500	7.5000	12.0000	4.5000
	TOTAL SUSPENDED SOLIDS	,	14.29		0.00	0	15.5000	18.0000	18.0000	8.0000

Table 4: Water Quality Parameters (Ninth of thirteen pages)

Pond	Analyte	Sample Size	Percent . Non-Detect	CWQCC	Percent Above Standard	Number of Non_Detects Omitted	M S	Med 3.0	85th Percentile	Inter- Quartile Range
	2,3,7,8-TCDD	9	100.00	•	0.00	0	2.1658	0.7500	6.5000	4.2100
-	AMMONIA	61	39.34	09	0.00	0	1.2052	0.4474	2.8000	1.2158
	BICARBONATE	37	00.00	•	0.00	0	173.7297	168.0000	205.0000	38.0000
	BICARBONATE AS CACO3	27	3.70	•	0.00	0	141.3293	140.0000	180.0000	48.0000
	CARBONATE AS CACO3	40	100.00	•	0.00	0	4.7625	4.6053	8.2895	5.0000
	CHLORIDE	59	0.00	250000	00.00	0	49,5593	50.0000	56.0000	9.0000
•	CYANIDE	10	100.00	5	00.00	0	5.1750	5.0000	8.8889	5,5558
	DISSOLVED ORGANIC CARBON	13	0.00		0.00	0	8.1538	8.0000	10.0000	2.0000
	FLUORIDE	58	3.45	2000	0.00	0	0.6517	0.6000	0.8000	0.1000
C2	HEXAVALENT CHROMIUM	45	97.78	11	0.00	0	0.0057	0.0052	0.0089	0.0050
	NITRATE	3	0.00	10000	00.00	0	104.4000	1.9000	310.0000	308.7000
	. NITRATE/NITRITE	64	71.88	10000	0.00	Ó,	0.2347	0.0638	0.3400	0.0713
-	NITRITE	51	94.12	200	0.00	0	0.0075	0.0059	0.0100	0.0059
	OIL AND GREASE	21	61.90	•	0.00	0	6.2524	3.9286	12.0000	5.9571
	ORTHOPHOSPHATE	29	51.72	•	0.00	0	0.0354	0.0200	0.0850	0.0438
	PHOSPHATE	34	47.06		0.00	0	0.0404	0.0100	0.1100	0.0747
	PHOSPHORUS	20	5.00		0.00	0	0.1308	0.0900	0.1900	0.1100
	SILICA, DISSOLVED	3	0.00		0.00	0	6.2000	6.0000	9.0000	5.4000
	SILICON	11	54.55		0.00	0	1.9091	1.7143	4.0000	2.1429

Table 4: Water Quality Parameters (Twelfth of thirteen pages)

					Percent	Number of				Inter-
- 1-11-1-1-	Analyte	Sample Size	Percent Non-Detect	CWQCC Standard	Above Standard	Non Detects Omitted	Mean	Median	85th Percentile	Quartile Range
	HEPTACHLOR	1	100.00	•	0.00	0	0.0000	0.000	0.000	0.000
	HEPTACHLOR EPOXIDE	2	100.00	٠	00.00	0	0.000	0.000	0.000	0.000
	METHOXYCHLOR	2	100.00	•	0.00	0	0.0003	0.0003	0.0003	0.0000
	NITRATE	1	100.00	10000	00.00	0	0.0500	0.0500	0.0500	0.000
	NITRATE/NITRITE	16	50.00	10000	0.00	0	0.1856	0.0950	0.5100	0.1700
	NITRITE	12	20.00	200	0.00	. 0	0.0294	0.0280	0.0500	0.0295
	OIL AND GREASE	18	61.11	•	00.00	0	4.9417	2.0333	4.1333	2.9500
	ORTHOPHOSPHATE	80	87.50	٠	00.00	0	0.0318	0.0250	0.0429	0.0286
LANDFILL	PHOSPHATE	2	20.00	•	0.00	0	0.0960	0.1000	0.1500	0.0100
	PHOSPHORUS	14	14.29	•	0.00	0	0.3308	0.1100	0.5900	0.2215
	SILICA. DISSOLVED	3	0.00	•	00.00	0	19.5667	8.3000	43.000	35.6000
	SULFATE	16	75.00	250000	0.00	0	6.0469	2.5000	13.8000	8.7083
	SULFIDE	8	100.00	2	0,0		0.5000	0.5000	.0.7500	0.5000
	TOTAL DISSOLVED SOLIDS	17	00.00	•	0.00	0	772.7059	760.0000	940.0000	142.0000
	TOTAL ORGANIC CARBON	4	0.00	٠	0.00	0	21.7000	21.6500	24.5000	5.4000
	TOTAL SUSPENDED SOLIDS	16	0.00	•	0.00	0	400.5625	126.0000	750.0000	152.5000
,	TOXAPHENE	2	100.00	•	00.00	0	0.0005	0.0005	0.0007	0.0003

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN Table 5 (First of six pages)

Site	Group	Analyte	CWQCC Standard	Sample Size	Percent Detect	Number of Exceedances	Hean (µg/L)
	CLP Volatiles (1)	ACETONE	-	10	10	0	6.55
	CLP Semi-Volatiles (2)	BIS(2-ETHYLHEXYL)PHTHALATE	1.8	12	8.33		22.875
	Selected Compounds-EPA 502.2 (9)	1,2,3-TRICHLOROBENZENE		11	9.03	0	0.0555
	Selected Compounds-EPA 502.2 (9)	1,2,4-TRICHLOROBENZENE	•	12	8.33	0	0.0558
	Selected Compounds-EPA 502.2 (9)	BENZENE, 1,2,4-TRIMETHYL	•	11	9.09	0	0.0564
	Selected Compounds-EPA 502.2 (9)	HEXACHL OROBUTAD I ENE	0.45	12	8.33	0	0.07
A1-A2	Selected Compounds-EPA 502,2 (9)	NAPHTHALENE	0.0028	12	8.33	1	0.1483
	Selected Compounds-EPA 502.2 (9)	TETRACHL OROETHENE	0.8	12	16.67	0	0.0792
	Selected Compounds-EPA 502.2 (9)	TRICHLOROETHENE	99	12	16.67	0	0.0817
	Selected Compounds-EPA 502.2 (9)	cis-1,3-DICHLOROPROPENE	10	12	8.33	0	0.08
	Selected Compounds-EPA 502.2 (9)	n-BUTYLBENZENE	•	11	9.09	0	0.1491
	Tri-Pesticides-EPA 619 (15)	ATRAZINE	က	12	83.33	0	1.0458

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN

Table 5 (Second of six pages)

	:		CNOCC	Sample	Percent	Number of	Hean
Site	Group	Analyte	Standard	Size	Detect	Exceedances	(µg/L)
	CLP Volatiles (1)	1,1-DICHLOROETHENE	0.057	132	0.76		2.6098
	CLP Volatiles (1)	METHYLENE CHLORIDE	4.7	132	6.82	6	2.9621
	CLP Volatiles (1)	TETRACHL OROETHENE	0.8	132	1.52	2	2.6212
	CLP Semi-Volatiles (2)	BIS(2-ETHYLHEXYL)PHTHALATE	1.8	33	90.9	2	5.4091
1	Selected Compounds-EPA 502.2 (9)	1,1,1-TRICHLOROETHANE	200	16	6.25	0	0.0888
A3-A4	Selected Compounds-EPA 502.2 (9)	1,1-DICHLOROETHENE	0.057	16	6.25	1	0.1381
!	Selected Compounds-EPA 502.2 (9)	TETRÁCHLOROETHENE	0.8	16	6.25	0	0.08
	Herbicides-EPA 615 (11)	DICAMBA	•	12	58.33	0	0.83
1	Herbicides-EPA 615 (11)	DICHLOROPROP	•	12	8.33	0	0.475
<u> </u>	Tri-Pesticides-EPA 619 (15)	ATRAZINE	£	76	59.21	5	0.7281
	Tri-Pesticides-EPA 619 (15)	SIMAZINE	4	64	12.5	0	0.1563

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN

Table 5 (Third of six pages)

Site	Group	Analyte	CWQCC Standard	Sample Size	Percent Detect	Number of Exceedances	Mean (μg/L)
	CLP Volatiles (1)	1,2-DICHLOROETHENE	•	16	6.25	0	2.9063
	CLP Volatiles (1)	ACETONE	•	13	30.77	0	37.0385
	CLP Volatiles (1)	METHYLENE CHLORIDE	4.7	16	12.5	2	4.875
	CLP Volatiles (1)	TRICHLOROETHENE	99	16	31.25	0	4.375
	CLP Volatiles (1)	cis-1,2-DICHLOROETHENE	70	-	100	0	3.3
	Selected Compounds-EPA 502.2 (9)	1,2,4-TRICHLOROBENZENE	•	12	8.33	0	0.0567
	Selected Compounds-EPA 502.2 (9)	CARBON TETRACHLORIDE	18	12	16.67	0	0.3083
B1-B2	Selected Compounds-EPA 502.2 (9)	CHLOROFORM	9	12	58.33	0	0.2158
	Selected Compounds-EPA 502.2 (9)	NAPHTHALENE	0.0028	12	8.33	ı	0.12
	Selected Compounds-EPA 502.2 (9)	TETRACHL OROETHENE	0.8	12	58.33	-	0.2133
	Selected Compounds-EPA 502.2 (9)	TOLUENE	1000	12	8.33	0	0.1333
	Selected Compounds-EPA 502.2 (9)	TRICHL OROE THENE	99	. 12	50	0	3.0775
	Selected Compounds-EPA 502.2 (9)	VINYL CHLORIDE	2	12	16.67	o	0.1783
	Selected Compounds-EPA 502.2 (9)	cis-1,2-DICHLOROETHENE	7.0	11	36.36	0	0.75-
	Tri-Pesticides-EPA 619 (15)	ATRAZINE	m	12	8.33	0	0.3033

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN

Table 5 (Fourth of six pages)

Site	Group	Analyte	CWQCC Standard	Sample Size	Percent Detect	Number of Exceedances	Hean (µg/L)
	CLP Volatiles (1)	ACETONE	•	9	16.67	0	8.1667
	CLP Volatiles (1)	CHLOROFORM	9	9	16.67	0	3
-	CLP Volatiles (1)	METHYLENE CHLORIDE	4.7	9	16.67	-	3.6667
<u></u>	CLP Pesticides/PCBs (7)	HEPTACHLOR	0.00021	9	16.67	0	0.0219
	CLP Pesticides/PCBs (7)	a]pha-BHC	0.0039	9	16.67	0	0.0219
	CLP Pesticides/PCBs (7)	alpha-CHLORDANE	•	ဖ	16.67	0	0,2192
· .	CLP Pesticides/PCBs (7)	beta-BHC	0.014	g	16.67	0	0.0219
	CLP Pesticides/PCBs (7)	gamma-BHC (LINDANE)	0.019	မှ	16.67	0	0.0219
E9	CLP Pesticides/PCBs (7)	ganma-CHLORDANE	-	ထ	16.67	0	0.2192
	Selected Compounds-EPA 502.2 (9)	1,4-DICHLOROBENZENE	75	S	09	0	0.092
<u></u>	Selected Compounds-EPA 502.2 (9)	BROMOD1CHLOROMETHANE	0.3	5	40	0	0.17
	Selected Compounds-EPA 502.2 (9)	CHLOROFORM	و	S	100	0	2.9
	Selected Compounds-EPA 502.2 (9)	TETRACHL ORDETHENE	9.0	S	09	0	0.04
	Selected Compounds-EPA 502.2 (9)	TRICHLOROETHENE	99	5	80	o	0.078
	Selected Compounds-EPA 502.2 (9)	cis-1,2-DICHLOROETHENE	70	4	25	0	0.08
	Tri-Pesticides-EPA 619 (15)	PROPAZINE		S	20	0	0.32

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN

Table 5 (Fifth of six pages)

Site	Group	Analyte	CVQCC	Sample	Percent Detect	Number of Exceedances	Hean (µg/L)
	CLP Volatiles (1)	ACETONE	•	120	10	0	15.3575
	CLP Volatiles (1)	METHYLENE CHLORIDE	4.7	121	5.79	7	2.7967
	CLP Volatiles (1)	TETRACHLORDETHENE	0.8	121	1.65	2	2.5992
	CLP Semi-Volatiles (2)	BIS(2-ETHYLHEXYL)PHTHALATE	1.8	31	9.68	3	6.3161
	CLP Pesticides/PCBs (7)	a 1 pha - BHC	0.0039	18	5.56	0	0.0238
	CLP Pesticides/PCBs (7)	alpha-CHLORDANE	•	ဆ	12.5	0	0.2238
	CLP Pesticides/PCBs (7)	beta-BHC	0.014	18	5.56	1	0.0268
84-85	CLP Pesticides/PCBs (7)	gamma-BHC (LINDANE)	0.019	18	5.56	0	0.0238
	CLP Pesticides/PCBs (7)	gamma-CHLORDANE	•	80	12.5	0	0.2238
	Selected Compounds-EPA 502.2 (9)	CHLOROFORM	9	58	62.07	0	0.7428
	Selected Compounds-EPA 502.2 (9)	TETRACHLOROETHENE	0.8	28	25	0	0.1339
	Selected Compounds-EPA 502.2 (9)	TRICHLORDETHENE	99	53	27.59	0	0.3831
	Herbicides-EPA 615 (11)	рісанва	•	22	13.64	0	0.2195
•	Tri-Pesticides-EPA 619 (15)	ATRAZINE	æ	16	83.52	1	0.556
	Tri-Pesticides-EPA 619 (15)	SIMAZINE	4	80	15	0	0.1461
ເວ		NONE					
	CLP Volatiles (1)	METHYLENE CHLORIDE	4.7	105	6.67	,	2.8819
	CLP Volatiles (1)	TETRACHLOROETHENE	0.8	105	0.95	1	2.5857
23	CLP Semi-Volatiles (2)	BIS(2-ETHYLHEXYL)PHTHALATE	1.8	23	17.39	4	8.3043
	Selected Compounds-EPA 502.2 (9)	1,1,1-TRICHLOROETHANE	200	22	9.03	0	0.1468
·	Tri-Pesticides-EPA 619 (15)	ATRAZINE	3	89	66.18	0	0.2109

POND WATER IM/IRA VOA/SVOA PROPOSED CONTAMINANTS OF CONCERN

Table 5 (Sixth of six pages)

						1	
Site	Group	Analyte	CWQCC Standard	Sample Size	Percent Detect	Number of Exceedances	Mean (μg/L)
	CLP Volatiles (1)	1,1-DICHLOROETHANE	•	17	76.47	0	6.3824
	CLP Volatiles (1)	1,2-DICHLOROETHENE	•	17	35.29	0	4.3529
	CLP Volatiles (1)	2-BUTANONE	•	17	17.65	0	10.6471
	CLP Volatiles (1)	4-HETHYL-2-PENTANONE	•	17	11.76	0	9.0294
	CLP Volatiles (1)	ACETONE	•	16	31.25	0	34.9063
	CLP Volatiles (1)	CARBON DISULFIDE	•	17	5.88	0	2.7059
	CLP Volatiles (1)	CHLOROETHANE		17	58.82	0	15.2353
	CLP Volatiles (1)	ETHYLBENZENE	680	17	82.35	0	12.9706
₹60MS	ليط	HETHYLENE CHLORIDE	4.7	17	29.41	S	15.6176
	CLP Volatiles (1)	TOLUENE	1000	17	88.24	0	44.3235
	CLP Volatiles (1)	TOTAL XYLENES	•	17	76.47	0	14.7647
	CLP Volatiles (1)	VINYL ACETATE	•	17	5.88	0	7.5882
	CLP Volatiles (1)	O-XYLENE		60	66.67	o	5.1667
	CLP Semi-Volatiles (2)	2-METHYLNAPHTHALENE		က	100	0	22.333
	CLP Semi-Volatiles (2)	4-HETHYLPHENOL	·	6	33.33	0	11
	CLP Semi-Volatiles (2)	NAPHTHALENE	0.0028	3	100	3	20.6667

*SW097=Landfill Pond

APPENDIX E POTENTIAL BENCHMARKS

APPENDIX E

TABLE OF CONTENTS

Table E-1.A	Potential Chemical-specific Benchmarks Groundwater Quality Standards
Table E-1.B	Potential Chemical-specific Benchmarks Federal Surface Water Quality Standards
Table E-1.C	Potential Chemical-specific Benchmarks Statewide and Basin (CDH/CWQCC) Surface Water Quality Standards
Table E-1.D	Potential Chemical-specific Benchmarks Stream Segment (CDH/CWQCC) Surface Water Quality Standards
Table E-1.E	Potential Chemical-specific Benchmarks Soil Contaminant Criteria
Table E-2	Colorado Air Quality Control Commission Standards
Table E-3	Potential Location-specific Benchmarks
Table E-4	Potential Action-specific Benchmarks
Table E-5	F039 Hazardous Waste Standards from 40 CFR 268.41 and 268.43

TABLE E-1.A POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS GROUNDWATER QUALITY STANDARDS

TABLE E-1.A POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) GROUNDWATER QUALITY STANDARDS GROUNDWATER QUALITY STANDARDS

			VITE AVEC			UNLESS OTHER		····			vo (ODA			1000 AC 2500	e graphe
					FEDERAL STANS					STATE STAN	aDAPADS walky Standards (1960au 19 1107au 1		
	1	se Method	SDWA Madmum Contaminant Level	SOWA Maximum Conteninsed Level	SDWA Maximum Consension Level Goals	SOWA Maximum Gornaminami Level Gost	RCRA Subpart F Limit (c)	Statewide Table A (d) (S)	Table 1 Human Health	Site-Specific Table 2 Secondary Drinking		Table 4 TDS	Table 5 Chronic	Table 6 Radioncoll Woman Creek	
matemeter Chloride Syaride Free) Kuoride N as Nitrate N as Nitrate+Nitrite N as Nitrate+Nitrite N as Nitrate		E325 E335 E340 E353.1 E353.1 E364.1 E375.4	250,000 * (a) 200 (h) 4,000; 2,000* (a) 250,000* (a)	10,000 (b) 10,000 (b) 1,000 (b)	200 (h) 4,000 (a)	10,000 (b) 10,000 (b) 1,000 (b)			200 4,000 10,000 1,000	250,000 250,000	2,000 100,000 10,000				
Colform (Fecal) Ammonia as N Dioxin Boron Chlorine, Total Residual Sultur		SM9221 C E350 (S) SW6010(5B)	1/100 ml (a)*** 3.0E-5 (h)		0 40)	-		0.00000022	1/1:00 ml		750		1.3E-06		
Dissolved Oxygen pH (Standard Units) Specific Conductance Temperature (Degrees Celsius)		P \$14500 P E150.1 P E120.1	8,5-8,5 * (a)							a.5-8.5	6.5-8.5				
Alkalinity Asbestos Total Dissolved Solids (TDS) Total Organic Carbon (TOC)		N E310.1 N E160.1 N E415.1	500,000° (a)	TMF/I (b)		714F/I (b)					5,000	400,000 (1)			
Aluminum Aralmony Arsonic Arsonic III Arsonic V		(S) (S) (S) (S)	6 (h) 50 (a)	50 to 200° (b)	6 (%)		50		50		100				
Barken Beryllium Cadmium Calcium		M (5) M (5) M (5) M (5) M (5)	2,000 (e) 4 (fy) 10 (a)	5 (6)	4 00	2,000 (e) 5 (b)	1,000		1,000		100				
Cesium Chromium Chromium III Chromium III Chromium VI Cobalt		M (5) M E218.5 M (5) M (5)	50 (a)	1,300 (f)		1,300 (b)	50		50	1,000	100 50 200				
Copper Iron Load Lithium Magneskum		M (5) M (5) M (5)	300 * (a) 50 (a)	15 (0)		0 60	50		50	300 50	5,000 100 2,500				
Mengenese Mercury Molybderum Nickel Potasskum		M (9)	2 (a) 100 (h)	2 (b) 50 (b)	100 (%)	2 (b) 50 (b)	10		10		10 200 20				
Selonium Silvar Sodium Strontken Thallium	1	M (5) M (5) M (5)	10 (a) 50 (a) 2 (h)	100 * (6)	0.5 (%)		50		50						
Tin Titunium Yungsten Yanadium Zino		M (5) M SW6010(5B) M SW6010(5B) M (0) M (5)	5,000 * (a)							5,000	100 2,000				

TABLE E-1.A (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992)
GROUNDWATER QUALITY STANDARDS

L VALUES ARE REPORTED IN 19/1 UNLESS OTHERWISE NOTED

				JES ARE REPO			2000 Program (*)	Para Para Para	500 80° 0	STATE STAN	DARIDS			77.3	300.00
					FEDERAL STAN)AROS		3830 374		article color desi-		ukonski je ukonski istori	on i A		1.00000
	क्का	or and the second	SDWA	SDWA	SDWA	SOWA		C	DH WOCC G	oundwater On Site-Specific I	ality Standards	d)			
			Maximum Contaminant	Maximum Contaminant	Maximum Contaminant	Maximum Gortaminara	HCRA	Statewide Table A	Yable 1	Table 2	Table 3	Table 4	Table 5 Chronic	Table 6	
		000000000000000000000000000000000000000	Levef	Lavel	Level	Level	Subpart F Limit	(0) (6)	Hoath	Becondary Drinking	Agricultura	TDS	CHECKEC	Woman	Walmut
	Туре	Method			Goats	Goal	(c)	10000				of the Stage of the stage		Creok	Creek
Parameter	(4)	(9)						10]			
Aldicarb	Р		3 (1) 2 (6)		10			10	İ	1 }		1			
Aldicarb Sulfone Aldicarb Sulfonide	P		2 (i) 4 (i)		1 0		ļ			1 1			0.0000784		
Aldrin	P	(5)			1	40 (b)		0.002]					l
Carbofuran		(5C)		40 (b)		40 (b)	1	1							
Chloranii	P	(5)		2 (b)	!	0 (6)		0.03					0.00046		l .
Chlordane Chlorpyifos	Р	(5)					1	0.1	1	1		1	0.000024	1	
DOT	P	(5)					İ	1				1	1	ŀ	1
DDT Metabolite (DDD) DDT Metabolite (DDE)	P	(5) (5)			i	i	1	0.1			Ì			1	ļ
Demeton	Р	(5)	ļ	1	ľ	1	1	1	l			1	1	1	1
Diazinon	P	(5)	ĺ			l	1	0.002		ł	i	i	0.000071	1	l
Dieldrin	P	(5) (5)	İ		i	1		1	ļ	1		1			1
Endosulfan I Endosulfan II	P	(5)		ŀ	l	1	į.		İ	1	ł	1	1	1	1
Endosulfan sulfate	P	(5)	2 (h)	1	2 (1)	1	0.2	0.2	1		1	1	1	1	1
Endrin	P P	(5) (5B)	240	1	1	ì	1	0.2				i	i	i .	İ
Endrin Aldehyde Endrin Ketone	P	(5B)	i	i	l		1	1	1		l	1	1	1	ł
Guthion (Azinphos methyl)	P	(5)			İ	0 (6)	i	0.006		!			0.00028	1	1
Heptachlor	P	(5) (5)		0.4 (b) 0.2 (b)	1	0 (6)		0.09		1		1	0.0092		1
Heptachior Epoxide Hexachiorocyclohexane, Alpha	P	(5)	ļ	1	1			0.006	1	1			0.0163	1	1
Hexachiorocyclohexane, Beta	P	(5)	1	1	1		1	į		1	1		ŀ	1	1
Hexachiorocyclohexane (HCH or BHC)	P	(5)			1	1			1	ļ		1	0.0123	1	1
Hexachlorocyclohexane, Delta Hexachlorocyclohexane, Technical (Total)	P	(SE)			ļ		1	0.2	1	1 .	1	1	0.0186	1	1
Hexachlorocyclohexane, Gamma (Lindane)	P	(5)	4 (a)	0.2 (b)	ł	0.2 (b)	4.0	uz	1			1		1	1
Malathion	P	(5B) (5)	100 (a)	40 (b)	J	40 (b)	100	40	1	i	1	1	1		1
Mirex	P	(S)			1		1	1	1	1	1	1		1	1
Oxamyl (Vydate)	P		200 (h)	1	200 (h)			1	1	1	i		1	1	1
Parathion	P	(5B)	1	3 (b)	1	0 (6)	5.0	0.03	1		i		1.	1	1
Toxaphene Vaponite 2	þ	(5)	1	J	l l	1	İ		l .	1		Ţ	1		1
Vaporitie 2		ł		1	1.	1	1	1	1			1		1	1
Areclor 1016	PP	(5)				i	ı			1		1		1	1
Arador 1221 Arador 1232	PP PP	(5) (5)		1		ì	1		i		1		1	1	1
Arodor 1232 Arodor 1242	PP	(5)	1	1	1	1		1							ļ
Arocler 1248	PP	(5)	1	1	1	ŀ				1	1	1		1	1
Aroctor 1254	PP	(5) (5)	1	1	1	1	1		1	1	1	1	0.000079	ıl	1
Arodor 1260 PCBs (Total)	PP	(5)		0.5 (b)		0 (b)	10	0.005 50		1	i			1	1
2.4.5-TP Silvex	#	(5C)	10 (a) 100 (a)	50 (b) 70 (b)	1	50 (b) 70 (b)	100	70	1		1	1	1	1	1
2,4-Dichlorophenoxyacetic Acid (2,4-D)	H	(5C)	100 (8)	.5 47	1	1	1	1		1	1	1	3	1	
Acrolein Atrazine	Н	(5D)	1	3 (6)		э (ы)	1	1	1		1	1	ľ	1	1
Bromacil	Н	1	200 (h)		200 ft)	1	1	1	1			1	1	1	1
Dalapon	H	(5) (5)	200 (h) 7 (h)	1	7 (%)	1	1	ı	1	1	1	1	1	1	1
Dinoseb Diquat	Н	1,7	20 (h)	1	20 (h)	1	1		1	1	1	1	1	1	1
Endothall	H	1	100 (1)	ı	100 (h) 700 (h)	1	1	1	1	1	1	1	1	1	
Glyphosate	H	1	700 (h) 500 (h)	1	500 (h)	1	1	ı	1	1	1	1	١.	1	1
Pictoram	1 #	(50)	4 (h)	1	4 (1)	1	1	. [1	1	1	ĺ	1	l	
Simazine		1		1	1	i	1				1	1	1	0.05	0.05
Americium (total) (pCVI)	B	1		1	}	1		1		1		1 .	ĺ	80	80
Americium 241 (pCVI)	R	1	(8)	1			1	e o			1		1		
Cosium 134 (pCi/l) Cosium 137 (pCi/l)	l ñ	1	(8)	1	1	1	ī		1	1					

TABLE E-1.A (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992)
GROUNDWATER QUALITY STANDARDS

GROUNDWATER QUALITY STANDARDS

STANDARDS OTHERWISE NOTED

Type Methods Goals Goa				[FEDERAL STAN	DARIO\$				STATE STAN	DARDS		7065666		0.000
Marchane Marchane			100000000000000000000000000000000000000	SOWA	STREAM	SDWA	1 SDWA	т		CON WOCC	roundwater Or	iskly Standards I	d)	800000	60 <u></u>	
Symmetry Symmetry				Maximum	Maximum	Maximum		RCBA	Statowide Table A	Table 1	Site Specific	Table 3				
Figure Color Col		Type	Method			Level	Level	Subpart F Limit		Human Health		Agriculture	TDS	Chronic	Woman	
15 (47) 15 (Parameter							(c)		-	-				Clock	
Variable 200 SCI-0	Gross Bota (pCtif) Platonium doubl (pCtif) Platonium 2384 2304 -240 (pCtif) Platonium 2384 2304 -240 (pCtif) Strontium 894 +90 (pCtif) Strontium 895 +90 (pCtif) Thorium 2304 2322 (pCtif) Tritium (pCtif)	8 8 8 8 8	(3)	50 (a) (2) (8) 20 (a) (8) (a) (2) (8) 8 (a) (2) (8) (a) (9)					5 8 80						0.05 15 5 8 60	19 0.05 15 5
1.4. 1.5	Uranium 235 (pCi/l) Uranium 238 (pCi/l)	Я R													5	10
1.3.15/16/bron-bronered @ flat 0	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene (Ortho) 1,2-Dichloroffrydrazine	SV SV	(5) (5) (58)	70 (h)	600 (6)	70 (%)	600 (b)		620 0.05							
2.4.5 Tichforophenol 9V (9) 2.4.0 Tichforophenol 9V (9) 3.5.1 Cichforophenol 9V (9) 4.0 Tichforophenol Dichlorobenzene (Meta) 1,4-Dichlorobenzene (Para)	sv		75 (a)		75 (a)		ì	75					1			
2.4 Districtly-broad	2,4,5-Trichiorophenol	SV	(5)		1	-		1		1	ĺ		1	1.2		
2.4 Delinstrophenod 97 (3) 2.4 Delinstrophenod 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 2.4 Delinstrodulume 97 (3) 4.4 Delinstrodulume 9					1	i	1		21	1	1	1	1	ı	1	
2.4 Chiefotochures 9V (5) 2. Chiefotochures 9V (5) 2. Chiefotochures 9V (5) 2. Chiefotochures 9V (5) 2. Alleritycherial 9V (5) 2. Martycherial 9V (5) 3. Martycherial 9V (5) 4. Chiefotochure 9V (5) 4. Chiefot	2.4-Dimethylphenol	sv		1		1		ì	14	i	l	1	1	1	1	
2.0 Chieforchamed	2.4 Dinitrophenol	SV		!	1	i i		1		1		1	1	1	l	1
2 C Nation planed 5V 69 69 69 69 69 69 69 6	2,6-Dinitrotoluene	sv	(5)		1	1		1		ļ		1	1	i	1	
2 Midrighyband 5V 69 2 Midrighyband 5V 69 2 Midrighyband 5V 69 2 Midrighyband 5V 69 2 Midrighyband 5V 69 3.3 Clickhochenistine 5V 69 3.3 Clickhochenistine 5V 69 4.0 Chieva 2-midrighyband 5V 69 4.0 Chieva 2-midr				1	i	1	1		İ		1	1	1	1	1	1
2 Ministry Marchaeter					1	1	1	-	1		1			1	1	
2-Neropathone	2-Methylphonol		(5)	1	1	1	1	1		1		1	1	1	1	1 .
A3 Childrato-Sensidistrian	2 Nitroaniline			i	1	1	1	1	1			1	1	1	1	
SA Collegion Committee SV Cg		SV		1	1	1		1	1		1	ļ	1	1	1	
4.0 Chiese 2-mand/spielanes 9V 90		87	(5)				1	1				1	1		1	1
Colorosidine SV Colo	4,6-Dintro-2-methylphenol			1	1	1		ľ	1		1			1	1	1
Coloro Security Price Price SV G9 Color Security Price Price Color Security Price Pric			(5)		ì		1	1	1	i i		1	1			1
## Chloro 3 -methylehenol			(59)	}	1	l.	1	1	1	1	1	İ	1	i	-	ı
4 Nitrophanol 89 V (50 Aceasphilhone 90 V (30 Beardaine 90 V (30 Beard			(5)	1		1	1	ł	ļ	1	1 -	1	1	1	1	1
4 Nitrophenol 97 (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			(3)	1	1		1-	1	1		1	1		1	1	-{
Accordange SV C0			(3)	1	i	1		1	1	1	1	1	1	į.		1
Authorization 6V (50 60 60 60 60 60 60 60	4-Nitrophenol	sv	(5)	1	1				1		1		1	1		i
Bancation 6V Citical		87	(5)	1		1	1		0.0008	1	ì	1		0.00012	ı	1
Second part of access	Benzidine	8V			1	!		1	u cone	1	1	1 .				
Section Sect				1	1	1		1		1	1	. [1	1	1	
Section Sect			(S)	0.2 (%)		O (h)	1	1		1	1	1	1	1		i
Bearton All personne SV SB	Renzo(b)(fuoranthene	sv	(5)		1		1	1			1	1		1	1	
	Benzo(g.h.èperylene	SV.	(2)	1	1				1	1	1	1		1	1	
Company Comp	Benzo (k) muor anthene		(5)	1 '	1	1		ì	1		1	1	1	1	1	1
bis (Citivo responsive former SV 155 155	bis (2-Chloraethoxy)methane	87	(5)			1	1	1	o m	1		1		0.00000	37	
bis (2C blavioriseprop)delibre	bis (Chloroethyt) other			1	1	1	1	1	400	1	1	1	1		1	1
DistyEuthyPanyOptimidate (XIC othyPenyOptimidate) DV DistyPenyOptimidate DV DistyPenyOptimidate DV DistyPenyOptimidate DV DistyPenyOptimidate DV DISTY	bis (2-Chloroisepropy()ether				1	0.00	1	1				1	1			1
Displayus/phthidate SV (S) Displayus/phthidate SV (S) (S) (S) (Chicknet Ethics SV (S) (S) (Chicknet Ethics SV (S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	bis (2-Ethylhexyl) phthalate (Di(2-ethylhexyl) phthalate			0.64	1	1000	1				1	1		1	1	
Charlossel Fitnes SV (59 Charlossel Marylosses SV (59 Charlossel Marylosses SV (59				1	i	1	1	1	ı	1		i			1	1
Chlorinated Nachalenes SV (5)				1	1	- 1	1	-	1	1	1	1	1		1	1
		SV	(5)	1	ı	1	i		Į.		1	1	1			

TABLE E-1.A (continued)
POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992)
GROUNDWATER QUALITY STANDARDS

					FEDERAL STANE	IARIO\$				STATE STAP		900000	\$2560 1964 \$600 0 1984		
	o policiono	400000000000000000000000000000000000000	SDWA	T SDWA	SDWA	SOWA	1		COH WOCC G	coundwater O	uality Standards	(4)			
Parameter	Тур е (4)	Mothed (5)	Medmen Conteminant Levol	Maximum Contaminum Lavot	Maximum Contaminant Lovel Goals	Maximum Contaminant Level Goat	FICEA Subpart F Limit (c)	Statewide Table A (d) (S)	Table 1 Human Health	Site-Specific Table 2 Secondary Drinking	Table 5 Agriculture	Table 4 TOS	Table 5 Chronic	Table 6 Radiomici Woman Creek	Mainu Creek
	sv	(5)						1	,			1			
Chlorophenol (Total) Chrysene	sv	(5)	i	1	1		1		1				1	ł	1
Dibenzohran	SV	(5)	Į.		1		1	1	1	1	i			1	1
Dibenz(a,h)anthracene	sv	(5)		1	1		1		1	1	l	1	1		1
Dichlorobenzenes	: SV	(5)		l	i		1	1	1	ì	1	1	0.01	1	i
Dichlorobenzidine (Total)	sv	(5)	1				1	1	1	1	i	1	ì	ì	1
Diethylphthalate	sv	(5)		1	400 (h)	i	1	l .		l .	1	1	1	1	l .
Di(2-ethyfhexyl)adipate	SV	(5)	400 (h)	ł	400 (n)	1	1	1	1	i		l.	1	1	i
Dimethylphthalate	67	(5)	1	1	1	l	1	1	1	1		ì			1
Di-n-butylphthalate	6V	(5)	1	1		!	l	i	1		1	1	1		
Oi-n-octylphthalate	8V	(5)	1	l .				1	1		l .	1			1
Ethylene Glycol	sv	(5C)	,		1		1	1	1	1	Į.	1	i	1	1
Fluoranthene	sv	(5)	1		l .	i	1	ì	i i	l .	1	1	1	l l	1
Fluorene	sv	(5)		1	ı	1	1	1	1	1	1	1 .		i	1
Formaidehyde	sv		1	1			1		l.	1	1	1		1	1
Haloethers	sv	(5)		1	0 (h)	i	1	le	i	1	į.	1	0.00072	l .	1
Hexachiorobenzene	sv	(5)	1 (h)	1	0 44	1		h	1	1	1	1	0.45	i .	
Hexachlorobutadiene	sv	(5)	50 (%)	ì	50 (h)	ļ.	1	1		1	1	1	1	1	1
Hexachlorocyclopentadiene	sv		20 ft/f	1	J~ (1)	l .		ł	1		1	1	1.8		i i
Hexachloroethane	SV		i	1		1	į.	1	1	1	!	1	1.	1	1
Hydrazine	SV		1	l .	1		1		1	1	1	1	1	1	1
Indeno(1,2,3-cd)pyrene	sv		i i	1	1	1	i	1,050		1			l.	ł	1
Isophorone	SV.		1	i	- 1	1	1		1	ł	1			1	
Naphthalene	sv		1		1	l .	- I	3.5	l l	i		1	1	1	i
Nitrobenzene	SV		I.	i	1]	1	1	1		ļ	1	1	1	1
Nitrophenois	87		1	1	J	1	1		1	1	1	1	0.0084	1	1
Nitrosamines	sv		1		1		- (1	í	1	ł	1	0.0008	}	J
N-Nitrosodibutylamine	67			1		1	1	1	1		l l	1 .	0.0008		1
N-Nitrosodiethylamine	SV.		i	1		1	1	1	l l	1	1	1	0.0014	1	1
N-Nitrosodimethylamine	sv		1		1	1	l l	1	i	i	1	1	4.9		1
N-Nitrosopyttolidine	SV			1		ì	1		1	1	1	1	4.9	1	
N-Nitrosodiphenylamine			1	1	1	1			1			1	1	l	1
N-Nitroso-di-n-propylamine	sv sv		1	1			-	1	1	1		· ·	i		1
Pentachlorinated Ethanes	54		1		i	1	1	6 (6)	1	1	1	ļ	ļ	1	
Pentachlorobonzene	, sv	/ (50) / (5)		1 (0)	i i	0 (e)	1	200	1	i		1	1	1	1
Pentachierophenol	SV	/ (5)	1			1 ''	j	1	1	1	1	1	1	1	ı
Phonanthrone	54	/ (S)	1			1	1	1	1	1	1	1	1	ŀ	1
Phenol	. 5		i	l			1	1	- 1		i	ì	0.0028	1	1
Phthalate Esters	- S			Į.	1		1	l	1	1	1	1	100000	1	i
Polynuclear Aromatic Hydrocarbons	S\		1	i	1/	1	l	i		l l	1	i	l l	1	-1
Pyrene	1 31	. 10	ı	1	- 1	i	1	1		1	1	1 .	-	1	- 1
h	v	(5)	2 (4)	i	O (a)	1	1	2	1		1	1	1	-1	- 1
Viryl Chloride	ı,		200 (a)	1	200 (a)	1	1	200	ı		i	ĺ	0.17	1	1
1,1,1-Trichloroethane	· I v		1 ,	1	4	1	- 1	L	1			-1	0.6	1	- 1
1,1.2.2-Tetrachioroethane 1,1.2-Trichioroethane	Ιv		5 (1)	1	3 (h)	1	1	3	1	ı	1	1	1	1	1
1,1,2-Trichloroethane	١v		1	1	1	1	1	1_	- 1	1	i		ı	1	1
1,1-Dichloroethene	. I v		7 (a)		7 (a)	i	1	7.	1	1	1	1		1	1
	- 1 7		5 (a)	1	() (a)	1	l l	0.4	l	1	l l	i	i	1	
1,2-Dichloroethene 1,2-Dichloroethene (cis)	١v		1	70 (b)	1	70 (b)	- 1	70	1	1	1	!	1	1	- 1
1,2-Dichloroethene (cts)	. 1 0		1	I	1	1	1	100	1	1	1	- (1	1	- 1
1,2-Dichloroethene (trans)	. I v		i	100 (b)	1	100 (b)	1	0.56	1	1	1 .	1		1	ı
1,2-Dichloropropane	ĺÝ		1 1	5 (b)	1	0 (6)	i	0.50	- 1	1	1	1		1	-
1,3-Dichloropropene (cis)	. I v		1	1	- 1	1	1	1	1	1	1	1	1		1
1,3-Dichloropropene (trans)	l v		í	i	- 1	1		1	1	1		l l	- 1	1	- 1
	ΙV		1	- 1	ı	l l	- 1	į.	1	- 1	1	1	1	1	1
2-Butanone	- 13		t	ł	- 1	1	1	ı	1	1 `	1			1	i
2-Hexanone			j	i	1	1	1	1	l l	í	1	- 1	- 1	ı	- 1
4 Methyl-2-pentanone Acetone	- 1 3		1	1	ſ	i	- 1	1 .	- 1	ł	1	ł	0.000	ĺ	- 1
Actione	- 1 3	/ (3)	1	1	1	1	1	i.	1		1		-	ſ	- (
Benzene	11		5 (4)	i	0 (a)	1	1	0.3	- 1	1	1	1	1		
Bromodichloromethane			<100** (a)	1	1	1		10.0							

TABLE E-1.A (continued) POTENTIAL CHEMICAL SPECIFIC BENCHMARKS (December 16, 1992) GROUNDWATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN Uggi UNLESS OTHERWISE NOTED

			I THE TAKE		FEDERAL STAN	DARDS	S			STATE STAN					
			ŚDWA	SDWA	SDWA	SDWA Maximum	·	C Statewide	DH WOCO G	roundwater On Bite-Specific	uality Standards (cr				-
Paramoter	Type (4)	Method (S)	Maximum Contaminant Lavel	Maximum Contaminum Livel	Maximum Contaminant Level Goals	Contaminant Level Goal	HCRA Subpart F Limit (c)	Table A (d) (0)	Table 1 Human Health	Table 2 Secondary Drinking	Table S Agriculture	Table 4 TDS	Table 5 Chronic	Table 6 Radionudir Woman Creek	des Water Creef
Bromoform Bromonethane Carbon Disulfide Carbon Totachforide Chlorinated Benzones Chlorobenzema	V V V/SV V	(3) (3) (3) (4) (9)	<100** (a)	100 (b)	0 🖚	100 (b)		a.3							
Chloroethane Chloroform Chloromethane Dibromochloromethane Okchloroethenes	***	(S) (S) (S) (S)	<100** (a)			700 (b)		6 14 680					0.19		İ
Ethyl Benzene Ethylene Dibromide Ethylene Oxide Halomethanes Methylene Chloride	****	(S) (SC)	100 (a) · 5 (h)	700 (b) 0.05 (b)	o (h)	0 (b)							a19		
Styrone Totrachloroethanes Totrachloroethanes Toksore Tickloroethanes Tickloroethanes	*****	(3) (3) (3) (3) (3)	5 (a)	5 (b) 1,000 (b)	O (a)	0 (b) 1,000 (b)		5 1,000 5					0.8		
Inchloroethene	l v	(5)		1	1	1	1	i	I	1	1	I	I	1	L

TABLE E-1.A (continued)

EXPLANATION OF TABLE A AND ENDNOTES

(I) TDS standard - see Table 4 in (d); standard is 400 mg/l or 1.25 times the background level, whichever is least restrictive (2) if both storitum-90 and tritum are present, the sum of their annual dose equivalents to bone marrow shall not exceed 4 mrem/yr (s) MDL for Radium 226 is 0.5; MDL for radium 228 is 1 secondary maximum contaminant level; TBCs
 itotal tritulomethanes: chloroform, bromoform, bromodichloromothano, dibromochloromethane
 Postive sample no more than once/morth (< 40 samples/morth) ARMR = Applicable on Relevent and Appropriate Requirement
CDH — Colorate Operatures of Health
CEROLA. — Comprosehearion Environmental Response, Compressation, and Liability Act
CFR — Code of Federal Regulations CPA = Code or teader in regulations
CPA = Environmental Protection Agency
NCP = National Contingency Plan
pGN = biocardins per files
PCB = polychlorinated biphenty
RFP = Rocky Flats Plant
SUMA = Safe Diviting Water Act
SUMA = Safe Diviting Water Act
SUMA = Safe Diviting Water Act
SUM = Solid Waste
TIC = Tentatively Identified Compound
upf = micrograms per files
WQCC = Water Quality Control Commission
MF/N = million fibers/files

(4) Type abbreviations are: A-anion; B-bacteria; C-cation; D-dioxin; E-element; FP-field parameter; H-herbicide; M-inorganic; M-metal; P-pesticide; PF-pesticide;PCB; R-radionucide; SV-semi-volatile; V-volatile

(5) See Attachment 1 for analytical methods with corresponding analytes and detection limits abbreviations are: E=EPA; SW=SW646; A=detected as total; E=detected as ICS or with method modifications; C=not routinely monitored; D=monitored in discharge ponds; E=mixture-individual isomers detected (6) Where the standard is below (more stringent than) the PQL, the PQL is interpreted to be compliance level (7) Value for gross alpha excludes uranitum (8) Average annual concentration of beta particles and photon radioactivity cannot exceed 4 milliremlyear dose equivalent

(a) EPA National Primary and Secondary Diriking Water Regulations, 40 CFR 141 and 40 CFR 143 (as of 519/90)
(b) EPA National Primary and Secondary Diriking Water Regulations, 40 CFR Parts 141, 142, 143, Final Rule, Effective July 30, 1992 (56 Federal Register 3526; 1/30/1991)
(c) NCP, 40 CFR 300; NCP Preamble 55 FR 8764; CERCLA Compliance with Other Lavs Manual, EPA/540/580006, August 1988, 40 CFR 264, 94
(d) CDH-Water Cuality Control Commission, The Basic Standards for Ground Water, 31 10, 51 CFR 140, 142, 142, 143, Fris B Rule, Effective January 1, 1993 (56 FR 30266; 71/1991)
(d) CDH-Water Cuality Control Commission, The Basic Standards for Ground Water, 141, 142, 142, Frial Rule, Effective January 1, 1993 (56 FR 30466; 67/191), and 57 FR 28785; 6/29/92 effective 127/92 and 11/1991. Action level no Control Commission, The Water Regulations for Lead and Copper, 40 CFR 141 and 142 (56 FR 26469; 67/191), and 57 FR 28785; 6/29/92 effective 127/92 and 11/1991. Action level no Commission, Classifications and Water Quality Standards for Ground Water, 312.0 (9/19/1991)
(d) CDH-Water Cuality Commission, August Regulations, 40 CFR 141 and 142, Final Rule, Effective January 17, 1964
(d) EPA National Primary Diniving Water Regulations, 40 CFR 141 and 142, Final Rule, Effective January 17, 1964
(d) EPA National Primary Diniving Water Regulations, 40 CFR 141 and 142, Final Rule, and Reconsideration (57 FR 22779) - no effective date established.

েওলাস্ট্রের

TABLE E-1.B
POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS
FEDERAL SURFACE WATER QUALITY STANDARDS

TABLE E-1.B

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992)
FEDERAL SURFACE WATER QUALITY STANDARDS
ALL VALUES ARE REPORTED IN ug/l UNLESS OTHERWISE NOTED

					SDWA Maximum	SDWA Maximum	CWA AWQC for Protection of	tion of	CWA AWQC for Protection of Human Health (c)	ction of
Parameter	Type (7)	Method (8)	Contaminant Lovel	Contaminant Level			Acarte C Value V	Tronic altie	Water and Fis Fish Co Ingestion On	Fish Consumption Only
Chloride Cyanide (Free) Flouride Na s Nitrate Na s Nitrate	4444	E325 E335 E340 E353.1	250,000 * (a) 200 (h) 4,000; 2,000 * (a)	10,000 (b)	200 (h) 4,000 (a)	10,000 (b) 10,000 (b)	860,000(g) 22	230.000(g) 5.2	200	
N as Nitrie Sulfate Suffide, H2S Undissociated	« « «	E354.1 E375.4 E376.1	250,000* (a)	1,000 (b)		(a) pop.':		8		
Coifforn (Focal) Armonia as N Dioxin	80 0	SM9221C E350 (8)	1/100 ml (a) 3.0E-5 (h)		(r) o		0.01	0.00001	0.000000013	0.00000014
Boron Chlorine, Total Residual Sulfur	កាកា	SW6010(8B) SM4500					19	Ξ		
Dissolved Oxygen pH (Standard Uritis) Spedific Conductance Temperature (Degrees Celsius)	£ £ £ £	SM4500 E150.1 E120.1	6.5.8.5 * (a)				5,000 SS	6.5-9 SS		
Alkalinity Asbestos Total Dissolved Solids Total Organic Carbon	2222	E310.1 E160.1 E415.1	500,000* (a)	ZME/I (b)		7MF/I (b)	SS	20,000 SS	250,000	300,000 F/L**
Aluminum Antimony Avsonic Avsonic	2222	(B) (B) (B)	6 (h) 50 (a)	50 to 200* (b)	G (h)		9,000	1,600 190 190	146 0.0022	45,000
Asseric V Barium Beryllium Cadmium	2222	(8) (8) (8)	2,000 (e) 4 (h) 10 (a)	5 (b)	2,000 (e) 4 (h)	5 (b)	850 130 3.9 (3)	48 5.3 1.1 (3)	1,000 .0068** 10	.117**
Calcium Castum Chromium Chromium III	SSSS	(8) (8) (9)	50 (a)	100 (b)		100 (b)	1,700 (3)	210 (3)	170,000	3,433,000
Chromium Vi Cobalt Copper Iron Lead	2222	6666 6	1,000 * (a) 300 * (a) 50 (a)	1.300 (f)		1,300 (f)	18 (3)	12 (3) 1,000 3.2 (3)	300	
Liftium Magnesium Manganese Marcare	2 Z Z Z	6 6 6 6	50 * (a) 2 (a)	2 (b)		2 (b)	2.4	0.012	50 0.144	100 0.146
Mokbdenum Nickel Potassium Selenium Silver	Z Z Z Z Z	6 6 6 6 6	100 (h) 10 (a) 50 (a)	50 (b) 100* (b)	100 (ft)	50 (b)	1,400 (3) 20 (d) 4.1 (3)	160 (3) 5 (d) 0.12	13.4 10 50	8
Sodium Strontium Thallium	ΣΣΣ	<u>666</u>	2 (h)		0.5 (h)		1,400 (1)	40 (1)	13	48
Tin Titanium Tungstein Tungstein Tungstein	2 2 2 2 2	(8) SW6010(E SW6010(E (8)	(B) (B) (S,000 * (a)				120 (3)	110 (3)		

TABLE E-1.B (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992)

FEDERAL SURFACE WATER QUALITY STANDARDS	A)! VALUES ARE REPORTED IN INCIDIN ESS OTHERWISE NOTED

			VII.OO	Contract	COUNTY.	COMAZA	P. Laye	The second second	PittA	
			Maximum			Maximum	AWQC for Protection of	tection of	AWQC for Protection of	ction of
			Contaminant	Contaminant	Contaminant		Aquatic Life (c	- Lorent	£ .	(2)
Parameter	Type (7)	Method (8)	E GAGE	100 100	100	Goals	Value Vo	alitie	water are Fish Ingestion	Consumption Only
Aldicarb Aldicarb Sulfone	6.6		3.00 (0.00)		- 1 - 0 - 0				10	
Adricarb Suffoode Adrin Carbotyan	<u> </u>	(38)	6	40 (b)	€	40 (b)	3.0		100 0.000074	0.000079
Chlorarii		(8)		2 (b)				0.0043	0.00046	0.00048
Chlorpyfos	<u>a</u> a	. € €						0.001	0.000024	0.000024
DOT metabolite (DDD)	. 0. 0.	000					0.06			
Democratical		(8) (8)			,			0.1		
Oledein Colores	. 0. 0	0 6 6					25	0.0019	0.000071	0.000076
Endosuffan I Endosulfan II	<u>т</u> с	3 (3						00.0		<u> </u>
Endosulfan Sulfate Endrin	<u> </u>		2 (h)		2 (h)		0.18	0.0023		-
Endrin Aldehyde Endrin Kanna	م م	•								
Cridius National Azinphos methyl)		(8)						0.01		
Heptachlor Hentachlor Fooxide	۵.	® ®		0.4 (b) 0.2 (b)		(£)	0.52	0.0038	0.00028	0.00029
Hexachlorocyclohexane, Alpha	. 0. 0	(8)				_ _			0.0092	0.031
пехаспотосускопехале, вета Нехастюсускорножале (НСН от ВНС)	L @L	o					921			
Hexachlorocyclohexane, Delta Hexachlorocyclohexane, Technical (Total)	۵.	(8) (8E)			-,				0.0123	0.0414
Hexachlorocyclohexane, Gamma (Lindane)	۵. ۵	-	4 (a)	0.2 (b)		0.2 (b)	8	0.08	_	0.0625
Methoxychior		(8)	100 (a)	40 (b)		40 (b)		50.0	100	-1
Miffex Oxamyi (Vydate)	r a-		200 (h)		200 (h)			0.001		
Parathion Toxaphene	a a a	(88) (8)		3 (b)		0 (₽)	0.065	0.0002	0.00071**	0.00073**
Vaponite 2	1									
Arodor 1016 Arodor 1221	요요	(8)			•					
Arodor 1232 Arodor 1242	d d	(8)								
Arodor 1248	<u>2</u> 8	000								
Arodor 1294 Arodor 1260	1 2 2	® © (()		3		28	**02.00000	**000000
	: :			(1)					200000	
2,4,5-IP SitVex 2,4-Dichlorophenoxyacetic Acid (2,4-D)	T I	() () () () ()	10 (a) 100 (a)	(a) 02 20 (b) 02		(a) 02 20 (b) 02			100	
Acrolein Arazine	II	(08)		3 (b)		3 (b)	(1)	23(1)	320	780
Bromacil	II		200 (b)		200 (h)					
Unagon	: I :	(2) (8)	7 (F)		7 (1)					
Unquat Endothall	ΞΞ		25 (ii)		20 (fl)	-				
Glyphosate Pictoram Simazino	III	 (98)	700 (h) 500 (h) 4 (h)		700 (h) 500 (h) 4 (h)					
American that all Inc.	п					-				
Americium 241 (pCi/l)	æ									

TABLE E-1.B (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) FEDERAL SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

			SUWA	SDWA	SDWA	SDWA	CWA	- 10.0	CWA	
			Maximum Contamínant	Maxdmum Conteminant	Maximum Contaminant	Maximum Contaminant	AWGC for Pro Aquatic Life (c		AWQC for Prof Human Health	ection of (c)
	Туре	Po d	Level	Level	Level Goals	t evel Goals	Acute Chronic Vatue Value		Water and Fish Fish Consump	Fish Consumption
Datameter	(3)	(8)							mgesnou	ÁIIS
Cesium 134 (pCi/l)	œ a		(+) (+)							
Gross Alpha (pCi/l)	· 05 (15 (a) (9)							
Gross Beta (pCi/l) Plutonium (total) (pCi/l)	r œ		50 (4)(4)(0)							
Plutonium 238+239+240 (pCi/l)	œ a	ć	(P) (e) 's							
Strontium 89+90 (pCi/l)	. œ	6	(a) (4) (6)							
Strontium 90 (pCi/l)	œa		8 (a) (6)							
Tribium (pCi/l)	. œ		20,000 (a) (4) (6)							
Uranium 233+234 (pCi/l)	œ									
Uranium 235 (p.Ci/l)	r a									
Uranium (total) (pCi/l)	Œ.									
									. 28	48
1,24,5 Totrachlorobenzene	જ જ	(8R)	70 (F)		70 (h)				3	2
1,2,4-inchlorobelizerie	3 %	(c)		(Q) (Q)	() ()	600 (b)				
1.2-Diphemyfrydrazine	s s	(88)		ì			270 (1)		0.042	0.56
1,3 Dichlorobenzene (Meta)	λS	(8)					•••			
1,4-Dichlorobenzene (Para)	sv	(8)	75 (a)		75 (a)				2 600	
2.4.5-Trichlorophenol	્ર ર	© (9						(1) 026	1.2 **	3.6 **
2.4.6-Trichlorophenol	۸ ۸ ۸ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	£) £					2,020 (1)	365 (1)	3,090	<u> </u>
2.4-Uchorophenol	s As	(e) (e)					2,120 (1)	;		
2.4-Dinitrophenol	s	<u>(8</u>							,	;
2.4-Dinitrotoluene	sv	(8)					330(1)	230(1)	0.11 **	9.1
2,6-Dinitrotoluene	۶. S	(0)					330(1)	(1)	5	14,300
2-Chloronaphthalene	As As	6) (d					4.380 (1)	2,000 (1)		
2-Chtorophenol 2-Methylnaphthalene	s s	() () () () () () () () () () () () () (,, , , , , ,				:		
2-Metrydphenol	s	(9)			٠				***	
2-Nitroaniline	۸s	(8)					(*)	150/41		
2-Nitrophenol	S S	⊕ €					(1)002	1)001	10.01	0.02
3,3-Urchlorobenziqine) A	<u>()</u>								
4 6-Dinitro-2-methylphenol	s S	(B)							13.4	765
4-Bromophenyl-pherryl-ether	۸s	(8)								
4-Chloroaniline	کر در	<u>60</u> (
4-Chlorophenyl-phenyl-ether	کر در در	6 6					30 (1)			
4-Methylphenol	s	(<u>(</u>								
4-Nitroaniline	ss	(8)								
4-Nitrophenol	٦S	(8)					230 (1)	150(1)		
Acenaphthene	کر دور	<u>6</u>					(1)	(1)		
Anthracene	کر م	(g)					2,500		0.00012	0.00053
Benzoire Benzoic Acid	\$ &	(8)								
Benzo(a)anthracene	S	8								
Вепго(а)ругеле	۸	(8)	0.2 (h)		(t))					
Benzo(b)fluoranthene	کر در دو	(8) (8)					_			
Benzo(g,h,i)perylene	کر در	0 3								
Benzy Alcohol	8 8	(8)								
bis(2-Chloroethoxy)methane	>s	(8)							1100	: 3
bis(2-Chloroethyl) ether	25	(8)	4						0.00376	0.00164
bis (Chloromethyl) ether	<u>ک</u> ر در	8							34.7	4,360
DIS(2-Citivitions)phulinalate (Di(2-ethylhoxyl)phuhalate)	,	<u> </u>	0 (11)		(t)					
Butadiene	>; ;	į								
Butylbenzytphthalate	SΛ	(8)								

TABLE E-1.B (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) FEDERAL SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN UGA UNLESS OTHERWISE NOTED

			SDWA	100	1000	1000	CWA		CWA	7
			Kraximum Contaminant	Contaminant	Maximum Contaminant	10000	Aquatic Life (c		Human Health (5
Parameter	14.€	Method (8)	[evel			t evel Goals	Acute Chronic Value Value	3 113 113	Water and Fish Fish Consur Indestion Only	Fish Consumption Only
Chlorinated Ethers	ΛS	(8)								
Chlorinated Napthalenes	25 25	(e) (e)		_			238.000 (1)			
Chlorophenol (Total)	` >	(8)								
Chrysene Otherzofican	25 25	(8) (8)								
Dibenz(a,h) arrthracene	s s	(8)					:			ļ
Dichlorobenzenes	25	(e)					1,120 (1)	763 (1)	9400 0 G	2,600
Diethyphthalate	25 6	(8)							000	1,800,000
Di(2-ethylhexyl)adipate	25 25	(e) (e)	400 (h)		400 (h)					2,900,000
Drinen iyib in telade Di-n-butyibhthalate	s 8	(B)							35,000	154,000
Dirnoctylphthalate	25.	(8)								•
Fluoranthene	3 3	(E)					3,980 (1)		42	3 5
Fluorene	AS A	(8)								
r ormaldenyde Haloethers	20 00	(8)					360 (1)	122 (1)		
Hexachlorobenzene	sv	(8)	- (F)		(L))		Ę		0.00072**	0.00074**
Hexachlorobutadiene Hexachlorocyclopentadiene	کر مر	£ £	50 (F)	******	50 (F)		(E) (E) &	5.2 (1)		3
Hexachloroethane	S	(8)			:		(1)	540 (1)	1.9	8.74
Hydrazine	25 25	6								
Ingeno(1,2,3-cg)pyrene Isophorone	8 8	© ©					117,000 (1)		5,200	520,000
Naphthalene	ss	(8)					2,300 (1)	620 (1)		
Nitrobenzene	જ જ	© ©					27,000 (1) 230 (1)	150 (1)	38,900	
Nitrosamines	જ	(B)					5,850 (1)	:		
N-Nitrosodibutylamine	જ રે	(88)							0.0064	0.587
N-Ntrosodiethylamine N-Ntrosodimethylamine	2 25	(98 (88)		• •					0.0014	16
N-Nitrosopyrrolidine	S	(88)			-				0.016	91.9
N-Nitrosodiphernylamine	کر در کر	(88) (88)							4.9 **	10.1
Pertachlorinated Ethanes	8 8	(88) (88)					7,240 (1)	1,100 (1)		
Pentachlorobenzene	S.	(88)		<u> </u>		(3)	50	***	74	8
Pentachlorophenol Phensothrana	کر در	(B) (B)		(e)		(e) ()	₹.	2	20.	
Phenol	ss	(8)					10,200 (1)	2,560 (1)	3,500	
Phthalate Esters Polymelear Aromatic Hydrocarbons	25 25	© (S)			=		E 085_	=	0.0028**	0.0311**
Pyrene	S	(8)								
Vinyl Chloride	>	(8)	2 (a)		0 (a)				2**	525 **
1,1,1-Trichloroethane	> >	æ æ	200 (a)		200 (a)				18,400	10.7 **
1,1,2-7 et agnoroethane	> >	(S) (S)	5 (h)		3 (H)			9.400	0.6**	41.8 ***
1,1-Dichloroethane	> :	(8)								
1,1-Dichloroethene	> >	(8)	7 (a)		7 (a)		118 000	20.000	***60	243 **
1,2-Dichloroethene (cis)	· >	(8)	(g)	(q) 02	<u> </u>	70 (b)				!
1,2 Dichloroethene (total)	> :	(8)		3		100 6				
1.2-Dichloroethene (trans)	> >	(3) (2)		100 (b)		0 (B) (E)	23,000	5,700		
1,3-Dichloropropene (cis)	> :	(8)					6,060	244 (1)	87	14,100
1.3-Dichloropropene (trans)	> >	(a)					000'0	(1)	5	j j
2.Hexanone	>	(8)								-
4 Methyl 2-pertanone	> >	(a) (c)								
Acetone	>	(0)								

TABLE E-1.B (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) FEDERAL SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

			SOWA	SDWA	SDWA	SDWA	CWA AWGC for Protection of	40.00	AWQC for Protection of	Calon of
			Contemiound			X	Aquatic Life (c)		Human Health	5
			l avel		200		Aoute	100	Water and	Fish
		Method	i i		Goals	Goals	Vahue	*. * · .	Fish	Consumption
Parameter	æ	(8)							mgestion	à là
	:	Ş					7.550	2,600	0.058	0.65
Acytonitrile	> >	<u>6</u> (2	19		(a) (a)				0.66**	** 0*
Benzene	> >	<u></u>	(4) (3) (3)							
Bromodichloromethane	> >	0 6	100 (2(4)							
Bromoform	> >	() (d)	(c) (a)							
Bromomethane	> >	<u> </u>								_
Carbon Disulfide	> :	(o)			(8)		35,200 (1)		0.4**	6.94 **
Carbon Tetrachloride	>	<u> </u>	(g)		₹ 5		250 (1)	50 (1)		
Chlorinated Benzenes	\s/\	(B)		100 61		(A) (A)			488	
Chlorobenzene	>	(8)		(a)		9				
Chloroethane	>	(<u>8</u>)					28 000 (1)	1.240 (1)	0.19 **	15.7 **
Chloroform	>	<u>@</u>	<100 (2)(a)							
Chloromethane	>_	®								
Dibromochloromethane	>	(8)	<100 (2)(a)				11 600 (1)		0.033**	1.85 **
Dichloroethenes	> :	<u>8</u>		300 (1)	,	700 (6)	32 000 (1)		1.400	3,280
Ethylbenzene	> :	æ		(0) (0)		(9)				
Ethylene Dibromide	> :	(8C)		(a) co.n		(1)				
Ethylene Oxide	> :	- 1	1				11 000 (1)		0.19**	15.7 **
Halomethanes	> :	<u> </u>	100 (3)		4					
Methylene Chloride	> :	<u>(8</u>	(E)	3		100 (B)				
Styrene	> :	(<u>G</u>		(a)		(m) 22.	9 320 (1)			
Tetrachloroethanes	> :	6) (3		é		3	5,280 (1)	840 (1)	0.80**	8.85 **
Tetrachloroethene	> :	(8)		(a) (b)		(9) (9)	17 500 (1)		14,300	424.000
Toluene	> :	© :		(a) 000.1		(2) 200	18,000 (1)		_	
Trichloroethanes	> :	<u>@</u> (1		(6) (45,000 (1)	21,900 (1)	27 **	80.7 **
Trichloroethene	> :	(8)	(a)		i)		;			
Virryl Acetate	> :	(8)		400004		10,000 (b)				
Xylenes (total)	>	(8)		10,000 (0)		10,000,00				

TABLE E-1.B (continued)

EXPLANATION OF TABLE B AND END NOTES

- •• = Human heath orteria for carchnogens reported for three risk levels. Value presented is the 10-5 risk level. = secondary madmum contaminant level, TBCs
 - *** = Concentration is pH dependent

ARAR = Applicable or Relavent and Appropriate Requirement

CERCLA \equiv Comprehensive Environmental Response, Compensation, and Liability Act

AWQC = Ambient Water Quality Official

EPA = Environmental Protection Agency CWA = Clean Water Act

CFR = Code of Federal Regulations

pCM = picocuries per liter
PCB = polychlorinated bipheryl
SDWA = Safe Drinking Water Act

* Species Specific

SW Sold Waste
TC = Tentathenly Identified Compound
ug/l = midrograms per liter
MF/L = million fibers/iter

(1) Criteria not developed; value presented is lowest observed effects level (LOEL)

(2) Total trihalomethanes: chloroform, bromoform, bromodichioromethane, dibromochloromethane

(3) Herdness dependent onterla, calculated assuming 50mg/l calcium carbonate

(5) Standard is not adequately protective when chloride is associated with potessium, calcium, or magnesium, rather than sodium. (4) Average armusi concentration of beta particles and photon radioactivity cannot exceed 4 milliterrityear dose equivalent.

(g) toon strontum-90 and tribum are present, the sum of their ambual dose equivalents to bone marrow shall not exceed 4 membry.

(i) Type abbreviations are: A=anion; B=bacteria; C=cation; D=dionin; E=element; H=harbicde; IN=inorganic; FP=field parameter; M=metal; P=pesticide; PP=pesticide; nuclide; SV=semi-volatile; V=volatile

abbraviations are: E=EPA; SM=SW646; A = detected as total; B = detected as TICs or with method modifications; C = not routinely monitored; D = monitored in discharge ponds; E = mixture-individual isomers detected (8) See Attachment 1 for analytical methods with corresponding detection limits

(9) Value for gross alpha excludes uranium

(10) MDL for radium 228 is 0.5; MDL for radium 228 is 1.0

(11) Where the standard is below (more stringent than) the PQL, the PQL is interpreted to be the compliance level.

(a) EPA National Primary and Secondary Dichking Water Regulations, 40 CFR 141 and 40 CFR 141 las of ktay 1930). Segment 4 MCLs are ARAR) Segment 5 MCLs are TBC; all MCL0s are TBC. (b) EPA National Primary and Secondary Dichking Water Regulations, 40 CFR Parts 141, 142 and 143. Final Rule, effective July 30, 1982 (66 Federal Register 350%; 1/30/1891).

(e) EPA National Primary and Sacondary Orthking Water Regulations, 40 CFR Pents 141, 142, and 143, Final Rule (56 FR 30256; 71/1/951) effective 1/1/1953

(# EPA Madinum Contaminant Level Goels and National Primary Drinking Water Regulations for Lead and Copper, 40 CFR 141 and 142 (56 FR 2646); 6/7/1991) effective 12/7/82 and 11/6/91. Action levels effective 12/7/92,

(d) EPA, National Ambient Water Quality Criteria for Selanium - 1987

MCLGs effective 11/6/91. Action level in 10% or less of tap samples for small and medium-sized systems.

(g) EPA National Arthlert Water Qualty Criteria for Chloride - 1999 (h) EPA National Primary Drinking Water Regulations, 40 CFR 141 and 142, Final Rule, Effective January 17, 1994 (j) EPA National Primary Drinking Water Regulations, 40 CFR 141, Postponement of Final Rule and Reconsideration (57 FR 22178), - no effective date established

TABLE E-1.C
POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS
STATEWIDE AND BASIN (CDH/CWQCC)
SURFACE WATER QUALITY STANDARDS

TABLE E-1.C

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STATEWIDE AND BASIN (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

						Statewide S	Statewide Standards (a)				Basin Standards (b)	ē
			Human Health				Tables (11,111 (1)	, E.H., M. (1).				
			Carcinogens/ Noncarcinogens (2) (8)		Aquatic Life (8) Acute Vatue	Chronic	Aquatic Acuto Value		Agricul	.0	Organics (7) Aquatic	Water
Parameter	₹.®	Method (6)		Water and Fish				8	lard	Supply (4,12)		Supply
Chloride Cyanide (Free)		E325 E335					ro.		900	250.000		
r kvoride IN as Närate IN as Närate – Närate		E353.1 E353.1 E353.1							100,000	10,000		
N as Nitrite Sulfate Sulfate	<<	E354.1 E375.4 E376.1					şş	ss 2		1,000 250,000 50		
Coliform (Fecal)		SM9221C								2000/100 ml		
Ammonia, Total Dioxin	ပဓ	E350 (6)	0.00000022	0.000000013	0.01	0.00001	17/8	8		200		
Boron Chlorine, Total Residual Sulfur	mmm	SW6010(6B) SM4500					6	=	750			· · · · · · · · · · · · · · · · · · ·
Dissolved Oxygen oH (Standard Units)	E E	SM4500 E150.1			•		>5,000	>5,000	>3,000	>3,000		
Specific Conductance Temperature (Degrees Celsius)		E120.†					30 degrees	30 degrees				
Alkalinity	Z Z	E310.1										
Total Dissolved Solids Total Organic Carbon	ZZ	E160.1 E415.1										
Aluminum	∑ :	© :					120	28		4.		
Arsenic Arsenic	¥ 2 2 2	<u>©</u>				•	980	55	100	: S		
Arsenic M Arsenic V Bandum Bandum		©							9	1,000		
Cadmium Calcium	22:	000					SVI	\$VT	0	2		
Cesium Chromium Chromium III	2 2 2	© ©					\$VT	ŞŽ.	8 8	25 0		
Chromium VI	ΣΣ	E218.5 (6)					9	=	3 ;	8		
Copper	223	<u>6</u> 6					SVI VI	1,000 (Trec) 7VS	8 8	7,000 300 (dis) 50		
Lead Lithium Macanasism	E Z Z) (5 (6										
Manganese Mercury	22	(© ©					2.4	1,000	200	50 (dis) 2.0		
Molybdenum Nickel	2 2	(Q) (Q)					SVI.	TVS	500		,	
Potassium Selenium	Σ Σ Σ	© © (-			135 TVS	17 TVS	8_	5 8		
Silver Sodium	2 2 2	<u> </u>					:					
Strontium Thalfium		9 9 9						15		0.012		
In Transum Transten	E Z Z	SW6010 (68)		,								
Variation		5 5					2VT	TVS	2,000	5,000		

TABLE E-1.C (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STATEWIDE AND BASIN (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN UG/I UNLESS OTHERWISE NOTED

						Statewide Standards (a)	ındards (a)			8	Basin	
							#14NA4-1#	(1)		9	darium in	
			Human Health		Section 18 of 18		Aquatic Life				Organics	
			Carcinogens/ Noncarcinogens		Acute	Chronic	Acute Chronic		Agricul Do	Q		ater
					/alue		one (2)		andard St	Aladans	S	Supply
Pyrameter	3 Kg	Method (6)		HSt and					2 K	8		
Adicarb	۵.		10									
Adicarb Suffonde Adicarb Suffonde		•		0,000	ري د						<0.003	
Aldrin Antrin & Dialdrin combined	۰.	 66	(6) 20	-	?	-		_		•	<0.003	
Carbofuran		(96)	8									-, tl
Chlordane		(9)	0.03 (8)			0.0043						
Chlorpyffos	٠.	© Ø	0.1			0.001				<u> </u>	0.001	
DDT Metabolite (DDD)	۵.	: © E		0.00083	0.6 1,050						0.00	
UDI Metabolite (UUC.) Demeton		.				0.1						
Diazinon Dieldrin	م م	(Q)	0.002	0.00014	1.3	0.0019				_	<0.003 0.003	-,
Endosultan t	<u> </u>	© ©										
Endosulfan Sulfate	٥. ۵	· 60 (0	0.93	0.09	0.0023					0.004	
Endrin Findrin Aldehyde	L 0L	e 8	0.2	0.2								
Endrin Ketone	۵. ۵.	68 g				0.01					0.0 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.2
Guthion (Azhipnos menty) Heptachlor		6	0.008	0.00021	0.26	0.0038						
Heptachlor Epoxide	۰.	© <u>©</u>	0.006									
Hexactiorocyclohexane, Aprila Hexactiorocyclohexane, Bata	0.0	.		0.014	92							
Hexachlorocyclohexane (HCH of BHC) Hexachlorocyclohexane, Delta		9										
Hexachiorocyclohexane, Technical (Total)	<u> </u>	(G) (E)	0.2	0.019	1.0	0.08					0.0	4
Malathion	٥. ٥	(9 9)	40			0.03					90.00	92
Methoxychlor	- <u>-</u>	Đ)	}			0.001					9	
will overamy (Vydate)	۵. م	(69)									0.04	100
Parathion Toxaphene	۰ ۵	<u>@</u>	0.03	0.00073	0.73	0.0002					<u> </u>	<u> </u>
Vaponite 2	٠.											
Arodor 1016	<u> </u>	© ©										
Arodor 1232	£ 8	© (
Arodor 1242 Arodor 1248	£	9										
Arodor 1254	£ 8	© @			·						£	
Arodor (280 PCBs (Total)	£ &	(6	0.005	0.000044	20	0.014					3	
2.4.5-TP Silvex	Ι:	(36)	96 8									95
2.40	Į	(<u>)</u>	2	320	88	73	-					
Acrolein Arrazine	Ξ	(09)										
Bromacil	II	9	-									
Datapon	Ξ.	<u> </u>										-
Diquat	II											
Glyphosate	II					,.						
Picloram	Ξ	(Q)										
	4											

TABLE E-1.C (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STATEWIDE AND BASIN (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN UGI UNLESS OTHERWISE NOTED

Type Accordance Control Cont							Statewide Standards (a)	(a) (a)				Basin	•
Type Market Continue Cont				Human Health				Table	s (#.#! (1)			CT GT GT GT GT GT GT GT GT GT GT GT GT GT	a .
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				Carcinogens/ Noncarcinogens.		Aquatic Life (8) Acute	Chronic	drattic				Organics (3)	
H	Peranology	₹ <u></u> 8		(2) (8) Water Supply		Value	Vatue			- 10		1 8.28.29	Water Supply
## 15.00	Americium (Total) (p.C.li) Americium 241 (p.C.li) Cesium 134 (p.C.li)	E E E		80 (10)									
12 13 15 15 15 15 15 15 15	Cesum 13 (pCl/) Gross Alpha (pCl/) Gross Beta (pCl/) Dispersion (pCl/)	C C C C											
R 1	r kuromum (1042)/pC(/) Plutonium 238+239+240 (pC(/) Radium 226+228 (pC(/)	= = =	6	15 (10)	<u></u>								
F	Strontium 89+90 (pCt/l) Strontium 80 (pCt/l) Thorizm 200 (pCt/l)	Œ Œ (8 (10)									t
H H TVS TVS TVS SV (66) 2 (6) TVS TVS TVS TVS SV (66) 1 (6) 2 (6) 2 (6) TVS <th>Tritium (pCi(f) Uranium 233+234 (pCi(f)</th> <td>z cc cc</td> <td></td> <td>20,000 (10)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Tritium (pCi(f) Uranium 233+234 (pCi(f)	z cc cc		20,000 (10)									
8Y (68) 2 (8) 8Y (68) 620 620 8Y (68) 620 4004 270 8Y (68) 605 4004 270 8Y (68) 75 75 870 8Y (68) 21 2 (200 870 8Y (68) 14 14 2 (120) 8Y (68) 171 2 (200) 200 8Y (68) 173 2 (200) 200 8Y (69) 170 320 200 8Y (69) 1700 320 200 8Y (69) 1700 320	Uranium 235 (p.č.i/) Uranium 238 (p.č.i/) Uranium (Total) (p.Ć.i/)	Œ Œ Œ	`						S/I				
8 Y (88) (620 (620) 620) 8 Y (88) (620) 620 (620) 620 (620) 6		8 8	(B)	2 (8)							-		
8.4 (6) 7.5 4.04 2.0 8.4 (6) 7.5 4.04 2.0 8.4 (6) 7.5 4.0 365 8.4 (6) 1.4 1.4 2.120 365 8.4 (6) 1.4 1.4 2.120 365 8.4 (6) 1.4 1.4 2.120 365 8.5 (6) 1.4 1.4 2.120 365 8.4 (6) 1.4 1.4 2.120 366 8.5 (6) 0.0038 1.30 2.000 2.000 8.4 (6) 0.0038 1.700 5.20 2.000 8.5 (6) 0.00038 1.700 5.20 2.000 8.5 (6) 0.00038 1.700 5.20 2.000 8.6 (6) 0.00038 1.700 5.20 2.000 8.7 (6) 0.00038 0.00038 1.700 2.500	Ortho)	ે જે જે	<u> </u>	620	020	,	. ,						
8. Y (8) 2 2 970 8. Y (8) 21 21 2020 365 8. Y (8) 14 14 2120 365 8. Y (8) 14 14 2120 365 8. Y (8) 14 14 2120 365 8. Y (8) 14 14 200 230 8. Y (8) 0.0028 2.000 2.000 8. Y (8) 0.00028 1.700 520 8. Y (8) 0.00028 2.500 2.500 8. Y (8) 0.00028 0.00028 2.500 8. Y (8) 0.00028 0.00028 2.500 8. Y (8) 0.00028 0.00028 0.00028 <th></th> <td></td> <td>8 6 6</td> <td>620 35</td> <td>400 400 12</td> <td>270</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			8 6 6	620 35	400 400 12	270							
8Y (6) 21 21 2.020 365 8Y (6) 14 14 2.120 365 8Y (6) 14 14 2.120 365 8Y (6) 0.03 2.20 2.20 8Y (6) 0.03 2.20 2.20 8Y (6) 0.03 3.0 3.0 8Y (6) 0.0028 1,700 5.20 8Y (6) 0.0028 1,700 5.20 8Y (6) 0.0028 1,700 5.20 8Y (6) 0.0028 0.0028 2.500 8Y (6) 0.0028 0.0028 2.500 8Y (6) 0.0028 0.0028 2.500 8Y (6) 0.0028 0.0028 0.0028 8Y (6) 0.0028 0.0028 0.0028 8Y (6) 0.0028 0.0028 0.0028 8Y (6) <t< th=""><th>, <u>10 10</u></th><td></td><td>(6</td><td>2 ~</td><td>2 6</td><td></td><td>0.00</td><td></td><td></td><td>***</td><td></td><td></td><td></td></t<>	, <u>10 10</u>		(6	2 ~	2 6		0.00			***			
8. W (6) 14 14 15 8. W (6) (11) 330 230 8. W (6) 4,380 2,000 8. W (6) 4,380 2,000 8. W (6) 13 8 8. W (6) 13 9 8. W (6) 1,700 520 8. W (6) 1,700 520 8. W (6) 0,0028 1,700 520 8. W (6) 0,0028 1,700 520 8. W (6) 0,0028 1,700 520 8. W (6) 0,0028 1,700 520 8. W (6) 0,0028 0,0028 1,700 8. W (6) 0,0028 0,0028 1,400 8. W (6) 0,0028 0,0028 1,400 8. W (6) 0,0028 1,400 1,800 8. W (6) 0,0028 0,0028 0,0			(6 6	, <u>v</u>	<u>ا</u> کا د		365			-			
8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.4 (6) 8.5 (6) 8.4 (6) 8.5 (6) 8.5 (6) 8.5 (6) 8.6 (6) 8.5 (6) 8.6 (6) 8.7 (6) 8.8 (6) 8.9 (6) 8.0 (6) 8.4 (6) 8.5 (6) 8.6 (6) 8.7 (6) 8.8 (6) 8.9 (6) 8.0 (6) 8.0 (7) 8.0 (7) 8.1 (8) 8.2 (8) 8.3 (9) 8.4			00	14	44	2							
8.V (6) 4.380 2,000 8.V (6) 4.380 2,000 8.V (6) 0.038 1.700 520 8.V (6) 0.0028 1.700 520 8.V (6) 0.0028 1.700 520 8.V (6) 0.0028 1.700 520 8.V (6) 0.0028 2.500 0.01 8.V (6) 0.0028 0.0028 0.0028 8.V (6) 0.0038 0.0038 0.0038 <td></td> <td>£ 6</td> <td></td> <td>;</td> <td></td> <td>530</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			£ 6		;		530	-					
5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 5.V (6) 6 (6) 6 (6) 7.V (6) 8.V (6) 9.V (6) 1.AO 1.AO			0 6 6				2,000						
5V (6) 0.039 0.039 5V (6) 0.039 0.039 5V (6) 1.70 520 5V (6) 0.0028 1.70 520 5V (6) 0.0028 1.70 520 5V (6) 0.0028 2.500 0.1 5V (6) 0.0028 0.0028 5V (6) 0.0028 0.0028 5V (6) 0.0028 0.0028 5V (6) 0.0028 0.0028 5V (6) 0.0028 0.0038 5V (6) 0.0028 0.0038 5V (6) 0.0038 0.0038 5V (6) 0.0038 0.0038 5V (6) 0.0038 0.0038 5V (6) 0.0038 0.0038 5V (6) 0.0038 0.0038 5V (6) 0.0038 5V (6) 0.0038			.					•					
5V (%) 5V (%)					0.039	······							
sv (6) 30 sv (6) 30 sv (6) 30 sv (6) 1,700 sv (6) 0,00028 sv (6) 0,00038			· • •										
sv (%) 30 sv (%) 30 sv (%) 30 sv (%) 1,700 sv (%) 0,0028 sv (%) 0,003(%) sv (%) 0,003(%) sv (%) 1,400 sv (%) 1,8(%)	<u> </u>		00		2								
sv (6) 0.0028 1,700 520 sv (6) 0.0028 1,700 520 sv (6) 0.0028 1,700 520 sv (6) 0.0028 2,500 0.1 sv (6) 0.0028 0.0028 0.0028 sv (6) 0.0028 0.0028 0.0028 sv (6) 0.0028 0.0028 0.0028 sv (6) 0.0028 0.0038 0.0038 sv (6) 0.003 (8) 0.003 (8) 0.003 (8)	ther		· • •										
SV (6) 1,700 520 SV (6) 0,0028 1,700 520 SV (6) 0,0028 2,500 0,1 SV (6) 0,0028 0,0028 0,0028 SV (6) 0,0028 0,0028 SV (6) 0,0028 0,0028 SV (6) 0,0028 0,0028 SV (6) 0,003 (8) 0,03 (8) SV (6) 1,400 1,400 SV (6) 1,8 (8) 1,8 (8)			000			3	_						
SV (6) 0.0028 0.0028 SV (6) 0.0002 (6) 2.500 0.1 SV (6) 0.0028 0.0028 0.0028 SV (6) 0.0028 0.0028 0.0028 SV (6) 0.0028 0.0028 SV (6) 0.003 (8) 0.003 (8) SV (6) 1.400 1.400							5			· · · · ·			
SV (6) 0.0028 SV (6) 0.0028 SV (6) 0.0028 SV (6) 0.0028 SV (6) 0.0028 SV (6) 0.003 (9) 0.003 (9) SV (6) 0.003 (9) 0.003 (9) SV (6) 1.400	9		0		187							-	-
(6) NS (6			6.00		(o)	7200					<u> </u>		
(9) AS (9			<u> </u>		0.0028	-	-						
SV (6) 0.03 (9) SV (6) (9) SV (6) (9) (9) SV (6) SV			ල ත		0.0028			T -1.**					
(a) VS (c) (b) VS (c) (c) (c) VS (c) (c) VS			Ø 6		0.0028								
SV (6)					0.03 (8)		•		 ,				
	ᆿ	-4	8 60		1.8 (8)								

TABLE E-1.C (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STATEWIDE AND BASIN (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN UGI UNLESS OTHERWISE NOTED

			enti-			Statewide Standards (a)	(e) spuspu			,	Basin Standards (b)	ē
			Huemaen Health				Tables (1, ff (1)	## (J)				
			12		Aguatic Life (8) Acute Value	Chronic /	Aquatic Use (11) Acute Chronic Value Value			£	Salarino Agrando	Water
Pacameter	\$ @	Method (6)		Water and Rish			N N		Standard 5 (8,12)	(4,12)	333333	Supply
Butadiene Butadherzychthalate	જ જ	. (6)	3*	3,000								
Chlorinated Ethers Chlorinated Napthalenes	ક જ	6 6										
Chloroalkyfethers Chlorophenol (fotal)	જ જ	66	`							····	-	-
Chrysene Deberzoluran	& &	<u> </u>		0.0028								
Dibenz(a,h) anthracene	36 26	<u> </u>		0.0028								
Diction observed Dictivity of the State of t	\$ 35	9		23,000								
Di(2-ethylitexyl)adipale Dimethylphthalate	જ જ	66		313,000								
Di-n-butyththalate Di-n-octyththalate	જ જ	© ©		2,00								
Ethylene Glycol Fluoranthene	જ જ	(3) (9)		45	3,980	····						
Fluorene Formaldefivde	જ જ	©		0.0028								
Haloethers	જ જ			2,00072								
Hexachlorobutadiene Hexachlorobutadiene	ે જ	2 6 1	· -	0.45	8 4	9.3						
Hexachlorocyclopentadiene Hexachloroethane	જ જ	6 6				98						
Hydrazine Indeno(1,2,3-cd)pyrene	જ જ											
Isophorone Mandapalana	S S		1,050	8.4 0.0028	117,000	023						
Nirobenzene	38	-	3.5		27,000							
Ndrophenols Nitrosamines	8 8	3 ©										
N-Nitrosodibutylarnine N-Nitrosodiethylamine	જ જ	8 8		0.0008		-						
NAttrosodimetrydamine	ે જે	8 8		0.00069		•						
N-Nitrosopyrtoname N-Nitrosodipherrylamine	કે જ	98		4.9			•					
N-Ntroso-di-n-propylamine Pentachlorinated Ethanes	s s			200.0								
Pentachlorobenzene Pentachlorohenol	જ જ	***	6 (8) 200		6	5.7						
Phenanthrene	% ⊗			0.0028	10,200	2,560					200	-
Phthalate Esters	ે જે	((C) (C)		0.0028						-		
Polynicear Aromatic riyurocarbons Pyrene	ઢ) ©		0.0028								
Vinyl Chloride	> :	•	25	2 8	-							
1,1,1-Trichloroethane	> >		8	0.17		2,400						
1,1,2-Trichloroethane	> >	6 6	9	0.6	9,400							
1,1 Licatoroentare 1,1 Dichloroenthene	· > >	000	7	0.057	118,000	20,000						
1,2-Uschloroethene (cis)	· > :	.	02									
1,2-Dichloroethene (total) 1,2-Dichloroethene (trans)	> >	<u> </u>	100	9		2,700						-
1,2-Dichloropropane 1,3-Dichloropropene (ds)	> >	<u> </u>	0.56 (8)	10	6,060	244						
1,3-Dichloropropene (trans)	>>	© ©		0		44						
24 lexanone	>	(9)										

TABLE E-1.C (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STATEWIDE AND BASIN (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN UGA UNLESS OTHERWISE NOTED

						OCHERNIO	Statewice Standards (4).				Standards (h)	2
			Human Health				4	Tables (II,III (1)				
			Carcinogens/		Aquetic Life (8)		Aquatic Life (11)	Life (11)	_	Ī	Organics	
			Noncarcinogens		Acute	Chronic	Aoute	Chromic	Agricut Do	2	(<u>)</u>	
			(8) (8)		Value	Value	Value	Value	fural W		ġ.	Water
Parameter	<u>\$</u> 10	Type Method	Water	Water and Fish			®.	8	Standard St.	Apdmg.	2	Ajdding
4-Methyl-2-pentanone	>	©										
Acetone	>	6										
Acrylonitrile	>	©		0.058	7,500	2,600						
Benzene	>	<u>(6)</u>	-	_	5,300							
Bromodictionomethane	>_	9	0.3	0.3					_			
Вготобот	>_	©	4	*					_			
Bromothane	>	(5)		84							-	
Carbon Disuffide	>	9						_				
Carbon Tetrachloride	>	9	0.3	0.25	35,200					•		
Chlorinated Benzenes	\S/\	<u>©</u>										
Chlorobenzene	>	9	901	81								
Chloroethane	>	<u>©</u>										
Chloroform	>	<u>©</u>	9	9	28,900	1,240						
Chloromethane	>	<u>©</u>		5.7	•							
Dibromochloromethane	>	<u>(0</u>	14	9								
Dichloroethenes	>	9										
Ethylbenzene	>	(9)	089	3,100	32,000					_		
Ethylene Dibromide	>	(8)										
Ethylene Oxide	>											
Halomethanes	>	(9)										
Methylene Chloride	>	9		4.7								
Зтугеле	>	<u>@</u>										
Tetrachloroethanes	>	(9)								_		
Tetrachloroethene	>	<u>(8</u>	20	9.8	5,280	840						
Toluene	>	9	1,000	1,000	17,500				_	•		
Trichloroethanes	>	(9)										
Trichloroethene	>	(9)	5	27	45,000	21,900						
Viryl Acetate	>	9										
Xylenes (Total)	>	(6)										

TABLE E-1.C (continued)

EXPLANATION OF TABLE (

≈ Applicable or Relevant and Appropriate Requirements ≈ Colorado Department of Health	≠ dissolved	Environmental Protection Agency	⇒ picocuries per liter	⇒ polychlorinated biphenyl	≈ species specific	= Solid Waste	■ Tentatively Identified Compound	■ Total recoverable	 Table Value Standard (hardness dependent), see Table III in (a) 	= micrograms per liter	■ Water Quality Control Commission
ARAR COH	dis	EPA	PC/N	Pca	SS	SW	JIC	Trec	TVS	√6n	Wacc

(1) Table I = physical and biological parameters Table II = inorganic parameters

Table III = motal parameters
Values in Tables I, II, and III for recreational uses and cold water biota are not included.
(2) N/A - Endnote deleted.

(3) All are 30-day values except for nitrate, nitrite, and cyanide.

(4) Ammonia, sulfide, chloride, sulfate, copper, from, manganese, artimony, beryllium, selenium, thalkium, and zinc are 30-day standards, all others are 1-day standards.

(5) type abbreviations are: A-artion; B-bacteria; C-cation; IN-inorganic; FP-field parameter; H-herbicide; M-metal; P- pesticide; PP-pesticide; PCB: R-radionucide; SV-semi-volatile; V-volatile

(6) See Attachment I for analytical methods and corresponding detection limits

abbreviations are: E-EFA; 6W-80/404: a -defected as TICs or with method modifications; c-not routinely monitored; d-monitored in discharge ponds; e-micture-individual isomers detected

(7) Basic Standards for Organic Chemicals (reference) apply as stream standards where none are fisted in Table 1A (reference b). See section 3.6.5(2)(7)

(8) Basic Standards for Organic Chemicals (reference) apply as stream standards where none are fisted in Table 1A (reference b). See section 3.6.5(2)(7)

In the absence of specific numeric standards for non-naturally occurring organics, the narrative standard free from toxics* (section 3.1.1(1)(4)) shall be interpreted and applied in accordance with the provisions of section 3.1.2 7(1)(c)(1)

(8) Where the standard is below (more stringent than) the PQL, the PQL is interpreted to be the compliance level.

(9) MDL for Radium 226 is 0.5; MDL for Radium 228 is 1.0

(9) MDL for Padameters are to be maintained at the lowest practical level; See section 3.1.11(2) in (a)

(11) Metals for equatic fiff use are stated as dissolved unless otherwise specified.

(12) Metals for agricultural and domestic use are stated as total recoverable unless otherwise specified.

TABLE E-1.D
POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS
STREAM SEGMENT (CDH/CWQCC)
SURFACE WATER QUALITY STANDARDS

TABLE E-1.D

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STREAM SEGMENT (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

			Segment 4 & 5 Stream Classification and Water Quality Standards (ti) (2)					
			Stream Sec	gment Table	Table 2 Fladionucli	des (6)		
Parameter	Туре (4)	Method (3)	Acute Value	Chronic Value	Woman Creek	Walruit Creek		
Chloride	A	E325		250,000				
Cyanide (Free)	l Â	E335	i	5				
Fluoride	Â	E340						
N as Nitrate	A	E353.1		10,000				
N as Nitrate+Nitrite	A	E353.1	- }		ļ	1		
N as Nitrite	A	E354.1		500		1		
Sulfate	Α	E375.4		250,000				
Sulfide, H2S Undissociated	Α	E376.1		2				
Coliform (Fecal)	В	SM9221C		2,000/100ml				
Ammonia as N	C	E350	TVS	100		Ī		
Dioxin	D	(3)		0.000000013	<u> </u>	ŀ		
Boron	E	SW6010(3B)		750	1			
Chlorine, Total Residual	E	SM4500	19	11]			
Sulfur	E			2				
Diametrod One ran	50	CMAEOC	- E 000	>5,000				
Dissolved Oxygen pH (Standard Units)	FP FP	SM4500 E150.1	>5,000 6.5-9	>5,000 6.5-9	1	1		
pri (Standard Onits) Specific Conductance	FP	E120.1	g 2-8	0.3-9				
Temperature (Degrees Celsius)	FP	£120.1						
(miles	IN.	E310.1			İ			
inity Jestos	IN IN	E310.1	1	1				
Total Dissolved Solids	IN	E160.1		ļ		İ		
Total Organic Carbon	IN	E415.1			İ			
Aluminum	м	(3)]			
Antimony	M	(3)	1		1			
Arsenic (Total Recoverable)	М	(3)	50					
Arsenic III	М	(-)		ļ	}			
Arsenic V	M			ļ)			
Banium	М	(3)						
Beryllium	М	(3)	4					
Cadmium	М	(3)	TVS	TVS				
Calcium	M	(3)	1					
Cesium	M	(3)	Ì	İ				
Chromium	M	(3)	50			İ		
Chromium III (Total Recoverable) Chromium VI	M M	E218.5	50 16	111		İ		
Cobalt	M	(3)	110	''		1		
Copper	M	(3)	TVS	TVS	1			
Iron (Dissolved)	M	(3)	300	50	1			
Iron (Trec)	М	(3)	1,000	1,000				
Lead	М	(3)	TVS	TVS				
Lithium	м	(3)			1			
Magnesium	M	(3)						
Manganese (Dissolved)	M	(3)	300	50				
Manganese (Trec)	M	(3)	1,000	1,000		1		
Mercury Molybdenum	M	(3)	1	0.01 (Total)	1	1		
Molybdenum Nickel	M	(3)	TVS	TVS	1			
Potassium	M	(3)			1			
Selenium (Total Recoverable)	M	(3)	10	1				
'9	М	(3)	TVS	TVS				
um	М	(3)						
.ntium	М	(3)		ļ	1			
Thallium Ti-	М	(3)			1			
Tin Titanium	M	(3)			Ì			
Tungsten	M	SW6010(38)				1		
Vanadium	M	(3)			1	1		
T ter record()	FWT	1107	1		1	_1		

TABLE E-1.D (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STREAM SEGMENT (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

			Segment 4 & 5 Stream Classification and Water Cuality Standards (b) (2)				
			Stream Sec (7)	gment Table	Table 2 Radionuclides (6)		
P≰rameter:	Type (4)	Method (3)	Acuse Value	Ghronic Value	Worker Creek	Wairast Creek	
Americium 241 (pCi/l)	R	177					
Cesium 134 (pCi/l)	R				80	80	
Cesium 137 (pCi/l)	R				7	11	
Gross Alpha (pCi/l)	R R				5	19	
Gross Beta (pCi/l) Plutonium (Total) (pCi/l)	R			1	0.05	0.05	
Plutonium 238+239+240 (pCi/l)	R			İ	15(a)	15(a)	
Radium 226+228 (pCi/l)	R	(5)			5(a)	5(a)	
Strontium 89+90 (pCi/l)	R					8	
Strontium 90 (pCi/l)	R			}	8 60(a)	60(a)	
Thorium 230+232 (pCi/l) Tritium (pCi/l)	B				500	500	
Uranium (pCi/l)	В						
Uranium 235 (pCi/l)	B						
Uranium 238 (pCi/l)	R				_	1.0	
Uranium (Total) (pCi/l)	R				5	10	
1,2,4,5-Tetrachlorobenzene	sv	(3B)					
1,2,4-Trichlorobenzene	SV	(3)			1		
1,2-Dichlorobenzene (Ortho)	SV SV	(3) (3B)					
1,2-Diphenylhydrazine 3-Dichlorobenzene (Meta)	SV	(36)		-		,	
Dichlorobenzene (Para)	sv	(3)		ļ			
,5-Trichlorophenol	s∨	(39)	·				
로4,6-Trichlorophenoi	sv	(3)		1.2			
2,4-Dichlorophenol	SV	(3)			ļ		
2,4-Dimethylphenol 2,4-Dinitrophenol	SV SV	(3)					
2.4-Dinitrotoluene	sv	(3)			1		
2,6-Dinitrotoluene	SV	(3)					
2-Chloronaphthalene	sv	(3)			1	1	
2-Chlorophenol	sv	(3)			ļ		
2-Methylnaphthalene	sv sv	(3)	1			ĺ	
2-Methylphenol 2-Nitroaniline	SV	(3)		1		ŀ	
2-Nitrophenol	sv	(3)					
3-Nitroaniline	sv	(3)					
4,6-Dinitro-2-methylphenol	sv	(3)		1			
4-Bromophenyl-phenyl-ether	sv	(3)					
4-Chlorophered phored other	SV	(3)					
4-Chloropherryl-pherryl-ether 4-Chloro-3-methylphenol	SV	(3)					
4-Methylphenol	sv	(3)]	
4-Nitroaniline	sv	(3)					
4-Nitrophenol	sv	(3)		1			
Acenaphthene	sv	(3)					
Anthracene	SV SV	(3)		0.00012		1	
Benzidine Benzoic Acid	SV	(3/B,C) (3)		J.00012			
Benzo(a)anthracene	sv	(3)					
Вепго(а) ругеле	sv	(3)					
Benzo (b) fluoranthene	SV	(3)					
Benzo(g,h,i)perylene Benzo(k)fluoranthene	SV	(3)					
Benzyl Alcohol	sv	(3)					
(2-Chloroethoxy)methane	sv	(3)					
2-Chloroethyl) ether	sv	(3)		0.0000037	,		
(Chloromethyl)ether	sv						
bis (2-Chloroisopropyl) ether	SV	(3)		1	ŀ		
bis (2-Ethylhexyl) phthalate (Di (2-ethylhexyl) p Butadiene	SV SV	(3)			ĺ		
		130		1		1	
Butyl Benzylphthalate	sv	(3)					

TABLE E-1.D (continued)

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) STREAM SEGMENT (CDH/WQCC) SURFACE WATER QUALITY STANDARDS ALL VALUES ARE REPORTED IN ug/I UNLESS OTHERWISE NOTED

		Method (3)	Segment 4 & 5 Stream Glassification and Water Guality Standards (b) (2)					
			Stream \$6	gment Table		Radiomiclides (6)		
Parameter	Туре (4)		Acute Value	Chronic Value	Wornan Creek	Waire.rt Creek		
Acrylonitrile	V	(3)		0.058				
Benzene	V	(3)			J	- }		
Bromodichloromethane	V	(3)		1				
Bromoform	V	(3)	1		Į			
Bromomethane	l v	(3)		1	1			
Carbon Disulfide	V	(3)	1	l	-			
Carbon Tetrachioride	V	(3)	[1		
Chlorinated Benzenes	V/SV	(3)						
Chlorobenzene	V	(3))			†		
Chloroethane	V	(3)			[{		
Chloroform	V	(3)		0.19		1		
Chloromethane	V	(3)				[
Dibromochloromethane	V	(3)	l	1	1	1		
Dichloroethenes	V	(3)		1	İ	i		
Ethylbenzene	(V	(3)		1		1		
Ethylene Dibromide	V	(3C)		1	ļ			
Ethylene Oxide	v		[1	1	1		
Halomethanes	V	(3)		0.19				
Methylene Chloride	V	(3)			1	-		
Styrene	V	(3)		1	1	j		
Tetrachloroethanes	V	(3)		0.8				
1,2,2-Tetrachloroethene	l v	(3)		1	1	Į		
iene	V	(3)		1	1	1		
.hloroethanes	ĺv	(3)	1		1	- {		
r,1,1-Trichloroethene	V	(3)				1		
/inyl Acetate	V	(3)				1		
Kylenes (Total)	V	(3)			1	1		

TABLE E-1.E POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS SOIL CONTAMINANT CRITERIA

TABLE E-1.E

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) SOIL CONTAMINANT CRITERIA ALL VALUES ARE IN mg/Kg UNLESS OTHERWISE NOTED

			PEDERAL BENCHMARES (a) Maximum allowed Consentration		STATE BENCHMARES (b) Maximum allowed	
					Concentrati	
	9000000 20000000	10 (00000000000000000000000000000000000	Concentati	O.B.		
		1				
			SOLIDS	LIQUIDS	SOLIDS	LIQUIDS
			(PPM)	(mg/l)	(PPM)	(mg/l)
	Турч	Method				
Parameter	(1)	(2)				
Chloride	A	E325			1	1
Cyanide (Free)	A	E335	4.416 E+0	4.416 E+0	,	
Flaoride	A	E340	ł		}	j
N as Nitrate	A	E353.1	}		1	
N as Nitrate+Nitrite	A	E353.1	l		1	
N as Nitrite	A	E354.1	İ		1	1
Sulfate	A	E375.4	İ	1	1	
Sulfide, H2S Undissociated	A	E376.1	ļ	1	1 .	
	1_	l		1	1	ŀ
Coliform (Fecal)	В	SM9221C		1	1	
Ammonia as N	C	E350]	1	1	1
Dioxia	D	(2)	1	}	1	
Boron	E	SW6010(2B)			}	1
Chlorine, Total Residual	E	SM4500			1	
Calonae, 10tal Residual Sulfur	E	3M4300	1	1		
Jenei	-		1			
Dissolved Oxygen	FP	SM4500		1	1	
pH (Standard Units)	FP	E150.1	1	1 .		ļ
Specific Conductance	FP	E120.1	l	1	1	}
*** raperature (Degrees Celsius)	FP			1	' -	
cy month (B og. vir commun)		1.		1.		Ì
linity	IN	E310.1				
rubestos	IN	j .			1	ŀ
Total Dissolved Solids	IN	E160.1	Ì		1	1
Total Organic Carbon	IN	E415.1				1
						ŀ
Aluminum	M	(2)			1	
Antimony	M	(2)	6.309 E-02	6.309 E-02		
Arsenic	M	(2)	3.155 E-01	3.155 E-01		
Arsenie III	M	1	1			1
Arsenie V	M		Ţ.			ĺ
Barium	М	(2)	6.309 E+0	6.309 E+0	,	l l
Beryllium	M	(2)				
Cadmium	M	(2)	6.309 E-02	6.309 B-02		1
Calcium	M	(2)				1
Cesium Character	M	(2)	2455 7 44	245557	1	
Chromium	M	(2)	3.155 E-01	3.155 E-01	1	
Chromium III	M	22405				
Chromium VI	M	E218.5				
Cobalt	M	(2)			1	1.
Copper	M	(2)				1
Iron Lead	M	(2)		1.		
Lead Lithium	M M	(2)) ¹	j		
Lithium Magnesium	t	(2)				
Manganesium Manganese	M M	(2)			1	1
миндинезе Мегенгу	M	(2)	1.262 E-02	1.262 E-02		İ
Molybdenum	M	(2)	1.202 2-02	1.202 13-02	İ	
Nickel	M	(2)	,	i		
Potassinm	M	(2)	ľ	ľ		
Selenium	M	(2)	6.309 E-02	6.309 E-02	l	ţ
Silver	M	(2)	3.155 E-01	3.155 E-01		
Sodium	M	(2)	1		1	
atium	M	(2)	1		.	
sium	M	(2)	1.893 E-02	1.893 E-02		
_ -	M	(2)				
Titenium	M	SW6010(2B)				
Tungsten	M	SW6010(2B)				
Venedium	M	(2)	1		1	1
Zine	M	(2)	1	1	1	I

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) SOIL CONTAMINANT CRITERIA ALL VALUES ARE IN mg/Kg UNLESS OTHERWISE NOTED

			PEDERAL BENCHMA Maximum al Concentrati	lowed	STATE BENCHMARES (b) Maximum allowed Concentration	
Parameter	Typ*	Method (2)	SOLIDS (PPM)	LIQUIDS (mg/l)	SOLIDS (PPM)	LIQUIDS (*g/i)
		1				
Aldicarb Aldicarb Sulfone Aldicarb Sulfone	P P P		1.253 E+0	6.309 E-02		
Aldrin Carbofuran Chloranii	P P P	(2) (2C)	1.351 B-03	1.262 E-05		
Chlordane Chlorpyrifos DDT	P P P	(2) (2)	1.944 E+01	1.262 E-02 6.309 E-04		
DDT Metabolite (DDD)	P	(2)	3.109 E+0 5.982 E-02	6.309 E-04		-
DDT Metabolite (DDE)	P	(2) (2)	9.902 E-01	6.309 E-04		1
Demeton Diazinon	P P	(2) (2) (2)	9.902 6-01	0.309 2-04		
Dieldria Endosulfan I Endosulfan II	P P P	(2) (2) (2)	1.292 E-03	1.262 E-05		
Endosulfan sulfate Endrin Endrin Aldehyde	P P P	(2) (2) (2B)	1.004 E+0	1.262 E-03		
Endrin Ketone Guthion (Azinphos methyl)	P P	(2B) (2)				
Heptachlor	P	(2)	3.345 E+0	2.524 E-03		
Heptachior Epoxide	P	(2)	8.346 E-01	1.262 E-03	1	
Hexachlorocyclohexane, Alpha	P	(2)				İ
Hexachlorocyclohexane, Beta	P	(2)		i		<u> </u>
Hexachlorocyclohexane (HCH or BHC) Hexachlorocyclohexane, Delta	P		Į.	ļ		
Hexachlorocyclohexane, Technical (Total)	P	(2) (2E)				
Hexachlorocyclohexane, Gamma (Lindane)	P	(2)				1
Malathion	P	(2B)	ĺ	1		
Methoxychlor	P	(2)	2.633 E+04	6.309 E-01		-
Mirex	P	(ļ
Ozamyi (Vydate)	P			Į	1	
Parathion	P	(2B)	1			
Toxaphene	P	(2)	7.909 E+01	3.155 E-02		
Vaponite 2	P	ļ				
Aroclor 1016	PP	(2)	İ		l	
Aroclor 1221	PP	(2) (2)	1	1	}	
Aroelor 1232	PP	(2)				
Aroelor 1242	PP	(2)		1		
Aroclor 1248	PP	(2)	1			
Aroclor 1254	PP	(2)				
Aroclor 1260 PCBs (Total)	PP PP	(2) (2)	1.223 E+01	3.155 E-03		
2,4,5-TP Silvex	н	(2C)	9.905 E+0	6.309 E-02		
2,4-Dichlorophenoxyacetic Acid(2,4-D)	Н	(2C)	1.069 E+02	6.309 E-04		
Aerolein	Н		1.181 E+0	3.15 E+0		
Atrazine	Н	(2D)		ļ		
Bromaeil Delanon	Н		ļ			
Dalapon Dinoseb	Н	(2)		!		
Diguat	H	(2)	1	1		
Endothali	н				1	
Glyphosate	H	1				
Pieloram	н		1		1	
Simazine	н	(2D)				
Americium (Total) (pCi/l)	R	1	1		1	

POTENTIAL CHEMICAL SPECIFIC BENCHMARES (December 16, 1992)
SOIL CONTAMINANT CRITERIA
ALL VALUES ARE IN mg/Kg UNLESS OTHERWISE NOTED

			FEDERAL BENCHMARES (*)		STATE BENCHMARKS (b)	
			Maximum allowed		Maximum allowed Concentration	
			Concentration	o mai	Concentrati	30 38
Parameter:	Тур* (1)	Method (2)	SOLIDS (PPM)	LIQUIDS (mg/l)	SOLIDS (PPM)	LIQUIDS (mg/l)
Americium 241 (pCi/l)	R					
Cesium 134 (pCi/l)	R					
Cesium 137 (pCi/l)	R	1	1		5.0 pCi/g	
Gross Alpha (pCi/l) Gross Beta (pCi/l)	R				50.0 pCi/g	
Plutonium (Total) (pCi/l)	R					
Plutonium 238+239+240 (pCi/l)	R			1	0.9 pCi/g	1
Radium 226+228 (pCi/l) Strontium 89+90 (pCi/l)	R	1			ł	
Strontium 90 (pCi/l)	R					1
Thorium 230+232 (pCi/l)	R	1	1			1
Tritium (pCi/l) Uranium 233+234 (pCi/l)	R					
Uranium 235 (pCi/l)	R			1		
Uranium 238 (pCi/l)	R					
Uranium (Total)(pČi/l)	R					
1,2,4,5-Tetrachlorobenzene	sv	(2B)	5.603 E+01	6.309 E-02		
1,2,4-Trichlorobenzene	sv	(2)	1.217 E+04	4.4165 E+0		
1,2-Dichlorobenzene (Ortho)	SV	(2)	4.999 E+03	3.785 E+0		,
Piphenylhydrazine ichlorobenzene (Meta)	sv	(2B) (2)	6.976 E-04 4.790 E+04	2.524 E-04 1.893 E+0		
Jichlorobenzene (Para)	sv	(2)	2.650 E+02	4.732 E-01		1
2,4,5-Trichlorophenol	sv	(2)	2.101 E+04	2.524 E+01		
2,4,6-Trichlorophenol 2,4-Dichlorophenol	sv	(2)	3.536 E-01 4.329 E+04	1.262 E-02 6.309 E-01		1
2,4-Dimethylphenol	sv	(2)	1.248 E+01	1.262 E-01		
2,4-Dinitrophenoi	sv	(2)	2.296 E+01	4.416 E-04		
2,4-Dinitrotolucae 2,6-Dinitrotolucae	sv	(2)				
2-Chioronaphthalene	sv	(2) (2)				
2-Chiorophenol	sv	(2)	4.412 E+04	1.262 E+0	į	
2-Methylmaphthalene	sv	(2)	1			}
2-Methylphenoi 2-Nitroaniline	sv	(2)				}
2-Nitrophenoi	sv	(2) (2)				
3,3'-Dichlorobenzidine	sv	(2)	5.656 E-02	5.047 E-04		ł
3-Nitroaniline 4,6-Dinitro-2-methylphenol	SV	(2)				
4,0-Dinitro-2-methylphenol 4-Bromophenyl-phenyl-ether	sv sv	(2) (2)				
4-Chloroaniline	sv	(2)		1		
4-Chlorophenyl-phenyl-ether	sv	(2)				1
4-Chloro-3-methylphenol 4-Methylphenol	sv sv	(2) (2)				İ
4-Nitroaniline	sv	(2)				
4-Nitrophenol	sv	(2)	1	1		
Acenaphthene Anthracene	sv	(2)	7.701 E+01	1267 8 00		
Beazidine	sv	(2) (2BC)	1.262 E-06	1.262 E-02 1.262 E-06		1
Benzoie Acid	sv	(2)				
Benzo(a)anthracene Benzo(a)pyrene	sv	(2) (2)	9.690 E-02 3.8675 E-02	6.309 E-05 1.893 E-05		1
Benzo(b)fluoranthene	sv	(2)	1.643 E-04	1.262 E-04		1. /
Renzo(g,h,i)perylene	sv	(2)				
vo(k)fluoranthene yl Aleohol	SV	(2)	7.790 E+02	2.524 E-02		
(2-Chloroethoxy)methane	SV	(2) (2)		1		1
bis(2-Chloroethyl)ether	sv	(2)	1.893 E-04	1.893 E-04		1
bis(Chloromethyl)ether	sv					1
bis(2-Chloroisopropyi)ether bis(2-Ethylhexyl)phthalate (Di(2-ethylhexyl)p	SV hthat SV	(2) (2)	2.234 E+03 4.210 E+01	6.309 E+0 1.893 E-02		

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) SOIL CONTAMINANT CRITERIA ALL VALUES ARE IN mg/Kg UNLESS OTHERWISE NOTED

			PEDERAL	- KNT000000000000000000000000000000000000		STATE BENCHMARKS (b)	
			BENCHMA Matieum al		Maximum al		
			100.000	Concentration		OII	
				1			
			SOLIDS	LIQUES	SOLIDS	LIQUIDS	
			(PPM)	(≃8 1)	(PPM)	(mg/1)	
	Туре	Method					
Parameter	(1)	(2)					
Butadiene	sv		i				
Butylbenzylphthalate	sv	(2)	6.375 E+04	5.678 E+0			
Chlorinated Ethers	sv	(2)					
Chlorinated Napthalenes	sv	(2)	İ		1		
Chloroalkyiethers	sv	(2)					
Chrysene	sv	(2)	1.516 E+01	1.262 E-03		İ	
Dibenzofuran	sv	(2)				}	
Dibenz(a,h)anthracene	SV	(2)	7.318 E-03	4.416 E-06	1		
Dichlorobenzenes	SV	(2)	4 705 77 1 05	1.893 E+02	1	1	
Diethylphthalate	sv sv	(2)	4.795 E+05	L893 E+02	1		
Di(2-ethylhexyl)adipate Dimethylphthalate	SV	(2)	9.232 E+06	2.524 E+03			
Di-s-butylphthalate	sv	(2)	3.2.2.2.7.00	1			
Di-n-octylphthalate	sv	(2)	3.441 E+04	3.785 E+0	1		
Ethylene Glycol	SV	(2C)			1		
Fluoranthene	sv	(2)	2.971 E+04	1.262 E+0			
Finorene	sv	(2)	1.048 E+01	1.262 E-02			
Formaldehyde	sv				1		
Haloethers	sv	(2)		1	1.		
Hexachlorobenzene	sv	(2)	2.619 E-01	1.262 E-04	1 .	1	
Hexachlorobutadiene	SV	(2)	5.139 E+0	3.155 E-03	i		
Hexachlorocyclopentadiene Hexachlorocthane	sv	(2)	8.283 E+03 2.956 E+0	1.262 E+0 1.893 E-02		ı	
Hydrazine	sv	(2)	6.309 E-05	6.309 E-05	1	1	
Indeno(1,2,3-ed)pyrene	sv	(2)	2.970 E+04	1	1	1	
Isophorone	sv	(2)	1.345 E+04	4.416 E+01			
Naphthalene	sv	(2)	5.738 E+05	6.309 E+01			
Nitrobenzene	sv	(2)	6.557 E+0	1.262 E-01	1		
Nitrophenols	sv	(2)	1	1	1	1	
Nitrosamines	SV	(2)			1		
N-Nitrosodibutylamine	sv	(2B)					
N-Nitrosodiethylamine	sv	(2B)	İ	1	1	I	
N-Nitrosodimethylamine N-Nitrosopyrrolidine	sv	(2B)	1.262 E-04	1.262 E-04	İ	1	
N-Nitrosodiphenylamine	sv	(2B) (2B)	6.309 E-05	6.309 E-05	1		
N-Nitroso-di-n-dipropylamine	sv	(2B)	0.303 2-03	0.309 25-03		1	
Pentachlorinated Ethanes	sv	(2B)	1	1		İ	
Pentachlorobenzene	sv	(2B)	2.284 E+03	1.893 E-04			
Pentachlorophenol	sv	(2)	2.917 E+03	1			
Phenanthrene	sv	(2)	1.398 E+01	1.262 E-02			
Phenoi	sv	(2)	2.051 E+04	1.262 E-02			
Phthalate Esters	sv	(2)					
Polynuclear Aromatic Hydrocarbons	sv	(2)					
Pyrene	sv	(2)	4.076 E+05	6.309 E+0		1	
Vinyl Chloride	v	m	1.822 E-01	1.262 E-02	[
1,1,1-Trichloroethane	V	(2) (2)	2.229 E+02	1	}		
1,1,2,2-Tetrachloroethane	v	(2)	5.832 E-03	1.262 E-03		1	
1,1,2-Trichloroethane	v	(2)	2.315 E-02	3.785 E-03			
1,1-Dichloroethane	v	(2)	1.140 E-02	2.254 E-03			
1,1-Dichloroethene	v	(2)	1.270 E+0	4.416 E-02			
1,2-Dickloroethane	V	(2)	3.717 E-01	3.155 E-02			
1,2-Dichloroethene (cis)	V	(2A)	2.973 E+01	4.416 E-7		,	
1,2-Dichloroethene (total)	v	(2)					
1,2-Dichloroethene (trans) 1,2-Dichloropropane	V	(2A)	3.641 E+01	6.309 E-01			
1,3-Dichloropropene (cis)	V	(2)	6.995 E-01	3.155 E-02			
1,3-Dichloropropene (trans)	v	(2) (2)					
2-Butanone	v	(2)	1			1	
2-Hezanone	v	(2)					
4-Methyl-2-pentanone	l v	(2)	1	1	1	1	

POTENTIAL CHEMICAL-SPECIFIC BENCHMARKS (December 16, 1992) SOIL CONTAMINANT CRITERIA ALL VALUES ARE IN mg/Kg UNLESS OTHERWISE NOTED

			PEDERAL BENCHMARES (a) Maximum allowed		STATE BENCHMARKS (b) Maximum allowed Concentration	
Parameter.	Type (1)	Method (2)	Concentration SOLIDS (PPM)	LIQUIDS (mg/l)	SOLIDS (PPM)	LIQUIDS (mg/l)
Acetone	v	(2)	5.170 B+02	2.524 B+01	-	1
Aerylonitrile	v	(2B)	3.785 B-04	3.785 E-04	1	
Benzene	v	(2)	8.879 E-01	3.156 E-02		
Bromodichloromethane	l v	(2)	7.546 B+02	4.4165 E+0	1	
Bromoform	V	(2)			1	
Bromomethane	v	(2)	3.606 B+01	3.155 E-01	1	
Carbon Disulfide	ĺv	(2)	1.277 E+04	2.524 B+01	i	1
Carbon Tetrackloride	v	(2)	1.408 E+0	3.155 E-02	1	į
Chlorinated Benzenes	V/SV	(2)	ì	ŀ		
Chlorobenzene	v	(2)	1.526 E+02	6.309 E-01	i	
Chloroethane	v	(2)			į.	
Chloroform	v	(2)	4.968 E-01	3.785 E-02		
Chloromethane	v	(2)	1		i	
Dibromochloromethane	v	(2)	1	1	1	ļ
Dichloroethenes	v	(2)	İ	1		1
Ethylbenzene	v	(2)	4.984 E+03	4.416E+0	1	
Ethylene Dibromide	v	(2C)	6.078 E-04	3.155 E-04	1	1
Ethylene Oxide	v]` -	6.309 B-04	6.309 B-04	1	
Halomethanes	v	(2)		1		1
Methylene Chloride	v	(2)	1		1	1
теле	v	(2)	2.343 E+0	3.155 E-02	1	
achloroethanes	v	(2)			Į.	
rachloroethene	v	(2)	3.480 E+0	3.155 E-02		
Toluene	v	(2)	1.173 E+04	1.262 E+01		1
Trichloroethanes	v	(2)		1	Į.	1
Trichloroethene	V	(2)	1.146 E+0	3.155 E-02		
Vinyl Acetate	v	(2)		1	j	j
Xylenes (total)	v	(2)		1	1	

TABLE E-2 COLORADO AIR QUALITY CONTROL COMMISSION STANDARDS, REGULATION 3

(State of Colorado, Regulation 3)

Criteria Pollutants (NAAQS)

CO, SO₂, NO_x, Particulate Matter (TSP), O₃, Pb

TSP (Total Suspended Particulates) - Colorado SIP for Metropolitan Denver

Annual 24-Hour	Primary Std 75 µg/m³ 260 µg/m³		Secondary Std 60 µg/m³ 150 µg/m³	Annual arithm	
SO ₂ (Sulfur Dioxide) -	Colorado SIP				
Incremental> Annual Arithmetic Mea 24-Hour Maximum 3-Hour Maximum	an	Catego 2 μg/n 5 μg/n 25 μg/	1 ³ 1 ³	Category 2 10 μg/m ³ 50 μg/m ³ 300 μg/m ³	Category 3 15 µg/m ³ 100 µg/m ³ 700 µg/m ³
O ₃ (Ozone, Oxidant) -	Colorado SIP for	Metropo	olitan Denver		
Averaging Time/Standa	ard	1 hour	160 µg	g/m³	• .
CO (Carbon Monoxide) - Colorado SIP	for Meti	opolitan Denver		
Averaging Time/Standa Averaging Time/Standa		8 hour 1 hour	10 μg/ 40 μg/		
NO ₂ (Nitrogen Dioxide) - Colorado SIP	for Metr	opolitan Denver		

Annual

Quarter

 $100 \mu g/m^3$

 $1.5 \mu g/m^3$

Averaging Time/Standard

Pb (Lead) - Colorado SIP

Averaging Time/Standard

(State of Colorado, Regulation 3)

Colorado PSD (Prevention of Significant Deterioration) Requirements

Significant rate of emissions per emissions unit that would equal or exceed any of the following in tons per year (tpy); emit or potential to emit:

CO: 100 tpy

 NO_x : 40 tpy (NO + NO_2)

SO₂: 40 tpy

Particulate Matter: 25 tpy of PM emissions (TSP)

PM-10 Emissions: 15 tpy, particulate aerodynamic diameter ≤ 10 µm

Ozone: 40 tpy of VOC (precursor for O₃)

Pb: 0.6 tpy

Fluorides: 3 tpy

H₂SO₄ mist: 7 tpy

H₂S: 10 tpy

Total reduced sulfur, including H₂S: 10 tpy Reduced sulfur compounds, including H₂S: 10 tpy

Total tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofurans: 3.2 grams/year, 3.5x10⁻⁶ tpy 2,3,7,8 -TCDD (tetrachlorodibenzo-p-dioxin)
Municipal waste combustor organics

Metals, measured as particulate matter: 14 Mgrams/year, 15 tpy Municipal waste combustor metals

Acid gases, measured as SO₂ and HCl: 36 Mgrams/year, 40 tpy Municipal waste combustor acid gases

(State of Colorado, Regulation 3)

Colorado PSD Requirements for Particular Pollutants

New Stationary Source Emissions or Net Emissions Increase from a Modification --> PSD

Particular pollutant emissions from a new major source or major modification, which would cause air quality impacts in any area of Colorado, less than the following amounts, not subject to BACT, monitoring and analysis requirements (Amounts at 25 • C and at one atmosphere (1013 millibars)):

co	8-hour average	575 μg/m³
NO ₂	Annual average	$14 \mu g/m^3$
PM-TSP	24-hour average	$10 \mu g/m^3$
PM-10	24-hour average	$10 \mu g/m^3$
SO ₂	24-hour average	$13 \mu g/m^3$
Pb	3-month average	$0.1 \ \mu g/m^3$
Hg	24-hour average	$0.25 \mu g/m^3$
Ве	24-hour average	1 ng/m^3 , $0.001 \mu\text{g/m}^3$
Fluorides	24-hour average	$0.25 \mu g/m^3$
Vinyl chloride	24-hour average	$15 \mu g/m^3$
Total reduced sulfur	1-hour average	10 μg/m ³
H ₂ S	1-hour average	$0.2 \mu g/m^3$
Reduced sulfur compounds	1-hour average	$10 \mu g/m^3$

(State of Colorado, Regulation 3)

Ambient Air Increments Over Baseline Concentrations in Colorado

Maximum allowable increases over baseline concentrations for the following:

Any Class I Area (National Parks, Wilderness and Primitive Areas):

PM - TSP	Annual geometric mean	$5 \mu g/m^3$
	24-hour maximum	$10 \ \mu g/m^3$
SO ₂	Annual arithmetric mean	$2 \mu g/m^3$
	24-hour maximum	$5 \mu g/m^3$
	3-hour maximum	$25 \mu g/m^3$
NO ₂	Annual arithmetric mean	$2.5 \mu g/m^3$
Any Class II Area (Near	rly Everywhere Else):	
PM - TSP	Annual geometric mean	$19 \mu g/m^3$
	24-hour maximum	$37 \mu g/m^3$
SO ₂	Annual arithmetric mean	$20 \mu g/m^3$
	24-hour maximum	91 μg/m³
	3-hour maximum	$512 \mu g/m^3$
NO ₂	Annual arithmetric mean	$25 \mu g/m^3$

901-004.450 (TableE2)

Location	Requirement	Citation
Fault zones	RCRA regulations specify that hazardous waste treatment, storage, or disposal must not take place within 200 feet of a Holocene fault.	40 CFR 2645.18(a)
Flood plain	Any RCRA treatment, storage, or disposal facility which lies within a 100-year floodplain must be designed, constructed and operated to avoid washout.	40 CFR 264.18(b)
Siting of Hazardous Waste Disposal Sites	Outlines siting criteria for hazardous waste disposal sites.	Colorado Hazardous Waste Act, Sections 25-15-101, 203, 208, 302
Siting of Wastewater Treatment Facilities	CDH Water Quality Control Division must approve locations of wastewater treatment facilities.	Colorado Water Quality Control Act Section 25-8-202 and 25-8-702
Siting within an area where action may cause irreparable harm, loss, or destruction of significant articles	Planned actions must avoid threatening significant scientific, prehistorical, historical, or archeological data.	36 CFR Part 65, National Historic Preservation Act
ing on or near historic property owned or controlled by Federal agency	Action to preserve historic properties; planning of action to minimize harm to National Historic Landmarks, included in or eligible for the National Register of Historic Places.	36 CFR Part 800, National Historic Preservation Act
Siting on critical habitat of endangered or threatened species	Action to conserve endangered or threatened species.	50 CFR Parts 200, 402, 33 CFR Parts 320-330
Wetlands	Actions must minimize the destruction, loss, or degradation of wetlands, as defined by Executive Order 11990, Section 7.	40 CFR Part 6, Appendix A
	Actions must not discharge dredged or fill material into wetlands without permit.	40 CFR Parts 230, 231
Area affecting stream or river	Action must protect fish or wildlife.	40 CFR 6.302

actionsb	Requirements	Prerequisites for Applicability ^{e,d}	Citation
Air Stripping	(CAA requirements to be provided.)		
Closure with No Post-closure Care (e.g., Clean Clo- sure)	General performance standard requires elimination of need for further maintenance and control; elimination of post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products.	Applicable to land-based unit containing hazardous waste. Applicable to RCRA hazardous waste (listed or characteristic) placed at site after the effective date of the requirements, or placed into another unit. Not applicable to material treated, stored, or disposed only before the effective date of the requirements, or if treated in-situ, or consolidated within area of contamination. Designed for cleanup that will not require long-term management. Designed for cleanup to health-based standards.	40 CFR 264.111
	Disposal or decontamination of equipment, structures, and soils.	May apply to surface impound- ments and container or tank liners	40 CFR 264.111 40 CFR 264.178
	Removal or decontamination of all waste residues, contaminated containment system components (e.g., liners, dikes), contaminated subsoils, and structures and equipment contaminated with waste and leachate, and management of them as hazardous waste.	and hazardous waste residues, and to contaminated soil, including soil from dredging or soil disturbed in the course of drilling or excava- tion, and returned to land.	40 CFR 264.197 40 CFR 264.288(o)(1) and 40 CFR 264.258
	Meet health-based levels at unit.		40 CFR 264.259

^aCurrently on RCRA, CHA, and SDWA requirements are included. Additional action-specific requirements will be added as additional statutes are analyzed.

^bAction alternatives from ROD keyword index, <u>FY1986 Record of Decision Annual Report</u>, January 1987, Hazardous Site Control Division, EPA.

Requirements have been proposed but not promulgated for air stripping, hybrid closure, gas collection and miscellaneous treatment. When these regulations are promulgated, they will be included in the matrix.

^dSome action-specific requirements listed may be relevant and appropriate event if RCRA definitions of storage, disposal, or hazardous waste are not met, or if the waste at the site is similar to but not identifiable as a RCRA hazardous waste.

Actions ^b	Requirements	Prerequisites for Applicability ^{ed}	Citation
Closure with Waste In-place	Eliminate free liquids by removal or solidification. Stabilization of remaining waste and waste residues to support cover.	Applicable to land disposal of hazardous waste. Applicable to RCRA hazardous waste (listed or characteristic) placed at site after the effective date of the requirements, or placed into another unit. Not applicable to material treated, stored, or disposed only before the effective date of the requirements, or if treated in-situ or consolidated within area of contamination.	40 CFR 264.228(a)(2) 40 CFR 264.228(a)(2) 40 CFR 264.258(b)
	Installation of final cover to provide long-term minimization of infiltration.		40 CFR 264.310
	30-year post-closure care and ground-water monitoring.		40 CFR 264.310
Comprehensive Environmental Response, Com- pensation and Liability Act Pro- gram	Establishes basic requirements for implementation of the Superfund at DOE facilities.		DOE 5480.14
Container Storage	Containers of RCRA hazardous waste must be: Maintained in good condition; Compatible with hazardous waste to be stored; and Closed during storage (except to add or remove waste). Inspect container storage areas weekly for deterioration.	Storage of RCRA hazardous waste (listed or characteristic) not meeting small quantity generator criteria held for a temporary period greater than 90 days before treatment, disposal, or storage elsewhere (40 CFR 264.10), in a container (i.e., any portable device in which a material is stored, transported, disposed of, or handled). A generator who accumulates or stores hazardous waste on-site for 90 days or less in compliance with 40 CFR 262.34(a)(1-4) is not subject to full RCRA storage requirements. Small quantity generators are not subject to the 90-day limit (40 CFR 262.34 (c),(d), and (e)).	40 CFR 264.171 40 CFR 264.172

^eRegional administrator may revise length of post-closure care period (40 CFR 264.117).

Actionsb	Requirements	Prerequisites for Applicability ^{c,4}	Citation
Container Storage (Continued)	Place containers on a sloped, crack- free base, and protect from contact with accumulated liquid. Provide containment system with a capacity of 10% of the volume of containers of free liquids. Remove spilled or leaked waste in a timely manner to prevent overflow of the containment		40 CFR 264.175
	system. Keep containers or ignitable or reactive waste at least 50 feet from the		40 CFR 264.176
	facility's property line. Keep incompatible materials separate. Separate incompatible materials		40 CFR 264.177
	stored near each other by a dike or other barrier.		40 CFR 264.178
	At closure, remove all hazardous waste and residues from the containment system, and decontaminate or remove all containers, liners.		
	Storage of banned wastes must be in accordance with 40 CFR 268. When such storage occurs beyond one year, the owner/operator bears the burden of proving that such storage is solely for the purpose of accumulating sufficient quantities to allow for proper recovery, treatment, and disposal.		40 CFR 268.50
Construction of a New Surface Im- poundment (see Closure with Waste In-place and Closure with No Post-closure Care)	Minimum Technology Requirements: Use two liners, a top liner that prevents waste migration into the liner and a bottom liner that prevents waste migration through the liner (throughout the post-closure period).	RCRA hazardous waste (listed or characteristic) currently being placed in a new surface impoundment, or use of replacement or lateral extension of existing land-	40 CFR 264,220
	Design liners to prevent failure due to pressure gradients, contact with the waste, climatic conditions, and the stress of installation and daily opera- tions.	fills or surface impoundments.	40 CFR 264.221
	Provide a leachate collection system between the two liners.		40 CFR 264.221
	Use a leak detection system that will detect leaks at the earliest possible time.		40 CFR 264.222

TABLE E-4 POTENTIAL ACTION-SPECIFIC BENCHMARKS^a

Actionsb	Requirements	Prerequisites for Applicability ^{c,4}	Citation
Construction of a New Surface Impoundment (see Closure with Waste In-place and Closure with No Post-closure Care) (Continued)	Groundwater Monitoring: Establish a detection monitoring program (264.98). Establish a compliance monitoring program (264.99) and corrective action monitoring program (264.100) when required by 40 CFR 264.91. All monitoring programs must meet RCRA general groundwater monitoring requirements (264.97).	Creation of a new landfill unit to treat, store, or dispose of RCRA hazardous wastes as part of a remedial action.	40 CFR 264.91- 264.100
Dike Stabilization	Design and operate facility to prevent overtopping due to overfilling; wind and wave action; rainfall; run-on; malfunctions of level controllers, alarms, and other equipment; and human error.	Existing surface impoundment containing hazardous waste, or creation of a new surface impoundment.	40 CFR 264.221
	Construct dikes with sufficient strength to prevent massive failure.		40 CFR 264.221
	Inspect liners and cover systems during and after construction.		40 CFR 264.226
	Inspect weekly for proper operation and integrity of the containment devices.		40 CFR 264.226
	Remove surface impoundment from operation if the dike leaks or there is a sudden drop in liquid level.		40 CFR 264.227
	At closure, remove or decontaminate all waste residues and contaminated materials. Otherwise, free liquids must be removed, the remaining wastes stabilized, and the facility closed in the same manner as a land-fill.		40 CFR 264.228
	Manage ignitable or reactive wastes so that it is protected from materials or conditions that may cause it to ignite or react.		40 CFR 264.227

Actions ^b	Requirements	Prerequisites for Applicability ^{cd}	Citation
Discharge of Treatment System Effluent	Best Available Technology: Use of best available technology economically achievable is required to control toxic and non-conventional pollutants. Use of best conventional pollutant control technology is required to control conventional pollutants. Technology-based limitations may be determined on a case-by-case basis.	Point source discharge to waters of the United States. ¹⁴	40 CFR 122.44(a)
	Water Quality Standards: Applicable Federally-approved State water quality standards must be complied with. These standards may be in addition to or more stringent than other Federal standards under the CWA. ^h		40 CFR 122.44 and State regulations ap- proved under 40 CFR 131
alama	Discharge limitations must be established at more stringent levels then technology-based standards for toxic pollutants.		40 CFR 122.44(e)
	Best Management Practices: Develop and implement a Best Management Practices program to prevent the release of toxic constituents to surface waters.		40 CFR 125.100
	The Best Management Practices program must:	Discharge to waters of the U.S.	40 CFR 125.104
	 Establish specific procedures for the control of toxic and hazardous pollutant spills. 		

[&]quot;Waters of the U.S." is defined broadly in 40 CFR 122.2 and includes essentially any water body and wetland.

⁸Section 121 of SARA exempts on-site CERCLA activities from obtaining permits. However, the substantive requirements of a law or regulation must be met. In particular on-site discharges to surface waters are exempt from procedural NPDES permit requirements. Off-site discharges would be required to apply for and obtain an NPDES permit.

hFederal Water Quality Criteria (FWQC) may be relevant and appropriate depending on the designated or potential use of the water, the media affected, the purposes of the criteria, and current information. (CERCLA Section 121(d)(2)(B)(1)) FWQC he protection of aquatic life will be relevant and appropriate when environmental factors (e.g., protection of aquatic unisms) are being considered. (50 FR 30784 (July 29, 1951))3

Actions ^b	Requirements	Prerequisites for Applicability ^{e,4}	Citation
Discharge of Treatment System Effluent (Contin- ued)	 Include a prediction of direction, rate of flow, and total quantity of toxic pollutants where experience indicates a reasonable potential for equipment failure. Assure proper management of solid and hazardous waste in accordance with regulations promulgated under RCRA. 		
	Monitoring Requirements: Discharge must be monitored to assure compliance. Discharge will monitor:		40 CFR 122.41(i)
	 The mass of each pollutant The volume of effluent Frequency of discharge and other measurements as appropriate 		
	Approved test methods for waste constituent to be monitored must be followed. Detailed requirements for analytical procedures and quality controls are provided.		40 CFR 136.1-136.4
	Sample preservation procedures, container materials, and maximum allowable holding times are prescribed.		
	Comply with additional substantive conditions such as:		40 CFR 122.41(i)
	 Duty to mitigate any adverse effects of any discharge; and Proper operation and maintenance of treatment system. 		
Discharge of Dredge and Fill Material to Waters of the United States and Ocean Waters	 The four conditions that must be satisfied before dredge and fill is an allowable alternative are: There must be no practical alternative. Discharge of dredged or fill material must not cause a violation of State water quality standards, violate any applicable toxic effluent standards, jeopardize an endangered species, or injure a marine sanctuary. 	Capping, dike stabilization, construction of beams and levees, and disposal of contaminated soil, waste material or dredged material are examples of activities that may involve a discharge of dredged or fill material.	40 CFR 230 33 CFR 320-330

Actions ^b	Requirements	Prerequisites for Applicability ^{ed}	Citation
Discharge of Dredge and Fill Material to Waters of the United States and Ocean Waters (Continued)	 No discharge shall be permitted that will cause or contribute to significant degradation of the water. Appropriate steps to minimize adverse effects must be taken. 		
(Community)	Determine long- and short-term effects on physical, chemical, and biological components of the aquatic ecosystem.		
Dredging	Removal of all contaminated soil.	RCRA hazardous waste placed at site after the effective date of the requirements, or placed into another unit.	See Closure in this Exhibit.
	Dredging must comply with Section 10 of the Rivers and Harbors Act and U.S. Army Corps of Engineers regulations.	Dredging in navigable waters of the United States.	33 U.S.C. 403 33 CFR 320-330
rgency Plan- Preparedness and Response for Operations	Provide coordination direction of planning, preparedness, and response to operational emergencies in which there is a potential for personal injury, destruction of property, theft, or release of toxic, radioactive, or other hazardous material which present a potential threat to health, safety, or the environment.		DOE 5500.2
Environmental Compliance Issue Coordination	Establishes DOE requirements for coordination of significant environmental compliance issues.		DOE 5400.2A
Environmental Protection Safety and Health Protection Information Reporting Requirements	Establishes requirements and procedures for reporting information having environmental protection, safety, or health significance for DOE operations.		DOE 5484.1
Excavation	Movement of excavated materials to new location and placement in or on land will trigger land disposal restric- tions for the excavated waste or clo- sure requirements for the unit in which the waste is being placed.	Materials containing RCRA haz- ardous wastes subject to land dis- posal restrictions are placed in an- other unit.	40 CFR 268 (Subpart D)
	Area from which materials are excavated may require cleanup to levels established by closure requirements.	RCRA hazardous waste placed at site after the effective date of the requirements.	See Closure in this Exhibit

Actionsb	Requirements	Prerequisites for Applicability ^{ed}	Citation
General Environ- mental Protection Program	Establishes environmental protection program requirements, authorities, and responsibilities for DOE operations for ensuring compliance with federal and state environment protection laws and regulations, federal executive orders, and internal department policies.		DOE 5400.1
Land Treatment	Prior to land treatment, the waste must be treated to BDAT levels or meet a no migration standard.	RCRA hazardous waste being treated or placed into another unit.	See Closure in this Exhibit.
	Ensure that hazardous constituents are degraded, transformed, or immobilized within the treatment zone.		40 CFR 264.271
	Maximum depth of treatment zone must be no more than 1.5 meters (5 feet) from the initial soil surface and more than 1 meter (3 feet) above the seasonal high water table.		40 CFR 264.271
	Demonstrate that hazardous constituents for each waste can be completely degraded, transformed, or immobilized in the treatment zone.		40 CFR 264.271
	Minimize runoff of hazardous constituents.		40 CFR 264.273
	Maintain runon/runoff control and management system.		40 CFR 264.273
	Special application conditions if food- chain crops are grown in or on treat- ment zone.		40 CFR 264.276
	Unsaturated zone monitoring.		
	Special requirements for ignitable or reactive waste.		
	Special requirements for incompatible wastes.		40 CFR 264.282
	Special testing and location requirements for certain hazardous materials.	RCRA waste numbers F020, F021, F022, F023, F026, F027 (dioxincontaining wastes).	40 CFR 264.283

actionsb	Requirements	Prerequisites for Applicability ^{e,d}	Citation
National Ambient Air Quality	National ambient air quality standards have been set to attain and maintain primary and secondary standards to protect public health and the environment. Requirements include a major-source permit, prevention of significant deterioration permit, non-attainable area permit, and visibility permit.	Remedial actions at Operable Unit 2 that may result in new sources of air emissions include incineration, excavation, and air stripping of contaminated ground- water.	CAA Section 109 and 40 CFR 50
National Environ- mental Policy Act - All New Projects	 Determination of level of documentation required Screen, review and assess potential environmental impacts Early submittal of an environmental checklist to NEPA compliance committee 		
Operation and Maintenance	30-year post-closure care to ensure that site is maintained and monitored.	Land disposal closure.	40 CFR 264.310
Slurry Wall	Excavation of soil for construction of slurry wall may trigger land disposal restrictions.	Materials containing RCRA haz- ardous waste subject to land dis- posal restrictions are placed in another unit. (See Treatment section for LDR schedule. Also see Consolidation, Excavation sections in this Exhibit.)	
Surface Water Control	Prevent runon and control and collect runoff from a 24-hour 25-year store (waste piles, land treatment facilities, landfills).	RCRA hazardous waste treated, stored, or disposed after the effective date of the requirements.	40 CFR 264.251(c),(d) 40 CFR 264.273(c),(d) 40 CFR 264.301(c),(d)
	Prevent over-topping of surface impoundment.		40 CFR 264.221(c)
Tank Storage (Onsite)	Tanks must have sufficient structural strength to ensure that they do not obilapse, rupture, or fail.	Storage of RCRA hazardous waste (listed or characteristic) not meeting small quantity generator crite-	40 CFR 264.190
	Waste must not be incompatible with the tank material unless the tank is protected by a liner or by other means.	ria held for a temporary period greater than 90 days before treat- ment, disposal, or storage else- where (40 CFR 264.10), in a tank	40 CFR 264.191
	Tanks must be provided with second- ary containment and controls to pre- vent overfilling, and sufficient free- board maintained in open tanks to prevent overtopping by wave action or precipitation.	(i.e., any portable device in which a material is stored, transported, disposed of, or handled). A generator who accumulates or stores hazardous waste on-site for 90 days or less in compliance with 40 CFR 262.34(a) (1-4) is not subject to full RCRA	40 CFR 264.193-194

Actions ^b	Requirements	Prerequisites for Applicability ^{e,4}	Citation
Tank Storage (Onsite) (Continued)	(1-4) is not subject to full RCRA storage requirements. Small quantity generators are not subject to the 90-day limit (40 CFR 262.34(c), (d), and (e)).		
	Inspect the following: overfilling control, control equipment, monitoring data, waste level (for uncovered tanks), tank condition, above-ground portions of tanks (to assess their structural integrity), and the area surrounding the tank (to identify signs of leakage).		40 CFR 264.195
	Repair any corrosion, crack, or leak.		40 CFR 264.196
	At closure, remove all hazard waste and hazardous waste residues from tanks, discharge control equipment, and discharge confinement structures.		40 CFR 264.197
	Store ignitable and reactive waste so as to prevent the waste from igniting or reacting. Ignitable or reactive wastes in covered tanks must comply with buffer zone requirements in "Flammable and Combustible Liquids Code," Tables 2-1 through 2-6 (National Fire Protection Association, 1976 or 1981).		40 CFR 264.198
Treatment (In a unit)	Storage Prohibitions: Storage of banned wastes must be in accordance with 40 CFR 268. When such storage occurs beyond one year, the owner/operator bears the burden of proving that such storage is solely for the purpose of accumulating sufficient quantities to allow for proper recovery, treatment and disposal.		40 CFR 268.50
	Design and operating standards for unit in which hazardous waste is treat- ed. (See citations at right for design and operating requirements for specif- ic unit.)	Treatment of hazardous waste in a unit.	40 CFR 264.190-192 (Tanks) 40 CFR 264.221 (Surface Impoundments) 40 CFR 264.251 (Waste Piles) 40 CFR 264.273 (LanTreatment Unit) 40 CFR 264.343-345 (Incinerators)

(Incinerators)

Actions ^b	Requirements	Prerequisites for Applicability ^{cd}	Citation
Treatment (in a unit) (Continued)			40 CFR 264.601 (Miscellaneous Treatment Units) 40 CFR 265.573 (Thermal Treatment Units)
Treatment (when Waste will be Land Disposal)	Treatment of waste subject to ban on land disposal must attain levels achievable by best demonstrated available treatment technologies (DBAT) for each hazardous constituent in each listed waste, if residual is to be land-disposed. If residual is to be further treated, initial treatment and any subsequent treatment that produces residual to be treated need not be DBAT if it does not exceed value in	Disposal of contaminated soil and debris resulting from CERCLA response actions or RCRA corrective actions is <u>not</u> subject to land disposal prohibitions and/or treatment standards for solvents, dioxins, or California list wastes unit November 8, 1990 (and for certain first third wastes until August 8, 1990).	40 CFR 268.10 40 CFR 268.11 40 CFR 268.12 40 CFR 268.41 40 CFR 268 (Subpart D)
	DBAT, if it does not exceed value in constituent concentration in waste extract Table for each applicable water. (See 51 FR 40642, November 6, 1986.)	All wastes listed as hazardous in 40 CFR 261 as of November 8, 1984, except for spent solvent wastes and dioxin-containing wastes, have been ranked with respect to volume and intrinsic hazards, are scheduled for land disposal prohibition and/or treatment standard determinations as follows:	51 <u>FR</u> 40641 52 <u>FR</u> 25760
		Solvents and dioxins Nov 8, 1986 California list wastes Jul 8, 1987 One-third of all Aug 8, 1988 ranked and hazardous wastes Underground injectangle Aug 8, 1988 tion of solvents and	
		dioxins and California list wastes CERCLA response Nov 8, 1988 action and RCRA correct- ive action soil and debris	
		Two-thirds of all ranked and listed hazardous wastes All remaining May 8, 1990 ranked and listed	
		hazardous wastes identified by characteristic under RCRA section 3001	<i>(</i>

Actionsb	Requirements	Prerequisites for App	licability ^{c4}	Citation
Treatment (when Waste will be Land Disposal) (Continued)		Any hazardous waste or identified waste RCRA section 3001 after November 8, 1984	Within 6 months of the date of identi- fication or listing	
Treatment (when Waste will be Land Disposal) (Continued)	BDAT standards for spent solvent wastes and dioxin-containing wastes are based on one of four technologies or combinations: for waste waters, (1) stem stripping, (2) biological treatment, or (3) carbon absorption [alone or in a combination with (1) or (2)]; and for all other wastes, (4) incineration. Any technology may be used however, if it will achieve the concentration levels specified.			40 CFR 268.30 RCRA Sections 3004 (d)(3), (e)(3) 42 U.S.C. 6924(d)(3), (e)(3)
Worker Safety	Occupational Safety and Health program for DOE contractor employees atgovernment-owned contractor-operated facilities.			DOE 5483.1A
•	Health and Safety Plan must be submitted.			29 CFR 1910.120

TABLES E-5A AND E-5B F039 HAZARDOUS WASTE STANDARDS FROM 40 CFR 268.41 AND 268.43

268.41 TABLE CCWE.—CONSTITUENT CONCENTRATIONS IN WASTE EXTRACT—Continued

	Commercial			CAS No. for	Waslewaters		Nonvastewaters	
AVESIG COGG	chemical name	See also	Regulated hazardous constituent	hazardous constituent	Concentration (mg/I)	Notes	Concentration (mg/	Notes
F011	NA	Table CCW in	Cadmhum	7440-43-9	¥X		0.004	
		268.43.	Chromkim (Total)	_	¥		5.2	
			Nickel	7439-92-1	× ×		0.51	
			Silver	7440-22-4	. _		0.02	
F012	NA	Table CCW in	Cadmlum	7440-43-8	¥Z		0.068	
		268.43.	Chromium (Total)	7440-47-32	¥		5.2	
			Nickel	7439-82-1	¥.		0.51	
			Siver	<u>.</u>	¥:		0.32	
F019	NA	Table CCW in	Chrombin (Total)	7440-22-4	~ ~		0.072	
		268.43.		_	<u> </u>		3.6	
F020-F023 and	NA	NA	HxCDD-All Hexachloro-dibenzo-p-dioxins	***************************************	<1 pp		<1 pop	
ruce-ruce dioxin			HxCDF-All Hexachloro-dibenzofurans					
Cornaining		-	PeCDD-All Pentachloro-dibenzo-p-dloxins		<1 ppb		<1 pp	
			Pecul-All Pentachioro-dibenzoturans					
			TODE AN Telephore dibenzo-p-dioxing		-1 ppp		<1 ppb	
			2.4.5. Telephotochanol		4			
			2.4.6-Trichlorophanol		0d 1		odd 1>	
			2,3,4,6. Tetrachlorophenot		- to		400	
			Pantachlorophanol		.,			
							-	
				95-95-4	1 ppb		<1 ppb	
				58-00-2	Edd 50.07		~0.05 ppm	
				87-86-5	100		Edd co.o.	
F024	NA	Table CCW in	Chromium (Total)	7	NA STATE		A 0.01	
		268.43.	Lead		ž		(Reserved)	
2000			Nickel	-	ž		0.088	
		Table CCW in	Anlimony	<u>. </u>	ž		0.23	
		268.43.	Arsenic	_	ž		0.0	
			Barkım		¥		52	
					¥:		990.0	
				~	Ž:		5.2	
			March		ž		0.51	
			Nickel	0-78-85-7	¥ :		0.025	
			Selector		¥ 2		0.32	
			Silver		. <u>.</u>		0.072	
K001	K001	_	Load		¥		0.51	
-	_	268.43.	-	_	_	_	_	

31 (3)	6.2 (1)	6.2		33			180	_	£	24	9																								
(3)	(2)	(3)		33 23	(3)		_	-			_				<u>.</u>	ő	o o	Ö	Ö	ŏ	o o	ě 5650	ō 56500	ē 80000	š 86800 ž					5 5650 6666 					51851478888118888888711811
0.046	0.057	0.054	0.054	0.055	0.055	0.055	0.28	800	230	0.010	0.059		0.29	0.29	0.29	0.28 0.24 0.021 0.13	0.29 0.24 0.021 0.13	0.24 0.021 0.021 0.031	0.28 0.021 0.13 0.059 0.059	0.28 0.021 0.021 0.013 0.059 0.013 0.013	0.24 0.24 0.13 0.13 0.059 0.36 0.014	0.28 0.24 0.021 0.03 0.039 0.013 0.014 0.014	0.28 0.24 0.021 0.03 0.03 0.014 0.014	0.24 0.24 0.02 0.03 0.03 0.013 0.013 0.013	0.24 0.24 0.021 0.03 0.03 0.013 0.014 0.013	0.24 0.24 0.021 0.03 0.059 0.014 0.014 0.014 0.014 0.00014	0.24 0.24 0.021 0.13 0.059 0.014 0.014 0.013 0.014 0.0014 0.0014	0.24 0.24 0.021 0.03 0.03 0.013 0.013 0.013 0.014 0.0014 0.0023 0.0023	0.24 0.24 0.021 0.03 0.039 0.013 0.014 0.014 0.014 0.0014 0.0014 0.0017 0.0017	0.24 0.021 0.031 0.039 0.039 0.014 0.017 0.0014 0.0014 0.0021 0.0021 0.0021 0.0021	0.24 0.021 0.03 0.03 0.03 0.014 0.013 0.0014 0.0014 0.0014 0.0017 0.0017 0.0055	0.24 0.24 0.021 0.03 0.03 0.013 0.013 0.013 0.0014 0.00014 0.0023 0.0423 0.053 0.053 0.053	0.24 0.24 0.021 0.039 0.039 0.013 0.014 0.0014 0.0014 0.0017 0.0017 0.0018 0.0058 0.0058 0.0058	0.24 0.24 0.021 0.03 0.03 0.03 0.013 0.014 0.001 0.023 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.24 0.021 0.031 0.039 0.039 0.014 0.013 0.000 0.023 0.003 0
67-68-3	56-23-5	79-00-8	79-01-6	118-74-1	67-69-3	67-72-1	200 00-1	83-32-8	75-05-8	2-96-96	53-96-3	• • • • • • • • • • • • • • • • • • • •	D-70-/01	107-13-1	107-13-1	107-13-1 309-00-2 92-67-1	107-13-1 107-13-1 309-00-2 92-67-1 62-53-3	107-13-1 309-00-2 92-67-1 62-53-3 120-12-7	107-13-1 309-00-2 92-67-1 62-53-3 120-12-7 140-57-8	107-12-1 107-13-1 309-00-2 82-67-1 62-53-3 120-12-7 140-57-8 1104-28-2	107-13-1 309-00-2 82-67-1 62-53-3 120-12-7 140-57-8 11104-8-2	107-13-1 107-13-1 108-00-2 109-00-2 109-00-2 109-00-2 120-12-7 140-13-2 11104-28-2 11104-28-2 111141-16-5	107-15-1 107-15-1 107-15-1 100-10-1 120-12-1 140-13-2 1104-28-2 11104-28-2 11104-28-2 11104-28-2 11104-28-2	107-13-1 309-00-2 309-00-2 62-53-3 120-12-7 120-12-7 1100-5-8 11104-28-2 11104-16-5 12672-29-6 11096-89-1	107-13-1 309-00-2 309-00-2 62-53-3 120-12-7 1100-57-8 11104-28-2 11104-28-2 11104-28-2 11097-89-1 11097-89-1 11097-89-1 319-84-8	107-15-1 309-00-2 82-53-3 120-12-3 120-12-3 1100-28-2 11109-28-2 11097-69-1 11097-69-1 11097-69-1 318-85-3	107-13-1 107-13-1 107-13-1 100-00-2 100-00-2 1100-23-2 11104-28-2 11104-28-2 11109-28-2 1109-8-1 1109-8-1 1109-8-1 1109-8-1 1109-8-1 1109-8-1 1109-8-1 1109-8-1	107-13-1 107-13-1 107-13-1 120-12-1 120-12-1 120-12-1 1100-1-2 11100-1-2 1100-1-2 1100-1-3 1100-	107-15-1 309-00-2 309-00-2 62-53-3 120-12-7 120-12-7 1100-25-8 11100-28-2 11007-69-1 11006-89-1 11006-89-1 11006-83-3 318-85-7 318-85-7 318-85-7	107-15-1 309-00-2 2-57-1 62-53-3 120-12-7 11104-28-2 11104-28-1 11096-8-6 11097-69-1 11096-8-5 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-7 318-85-8	107-13-1 107-13-1 107-13-1 100-00-2 100-00-2 120-12-7 1100-12-7 11104-28-2 11104-28-2 1109-2-28-6 1109-6-8-1 1109-6-8-1 1109-8-1	107-15-1 107-15-1 107-15-1 120-12-7 120-12-7 140-15-2 1104-28-2 1104-28-2 11097-28-1 11097-28-1 11096-82	107-15-1 309-00-2 309-00-2 120-12-1 120-12-1 120-12-1 1100-2-8-1 1100-2-8-1 1100-8-1 11	107-15-1 309-00-2 309-00-2 120-12-7 120-12-7 1100-25-8 11100-28-2 11100-28-2 11096-89-1 11096-89-1 11096-89-1 208-25-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2 208-99-2	107-13-1 107-13-1 107-13-1 107-13-1 120-12-1 120-12-1 140-12-2 1110-12-20-6 1110-12-20-6 1109-13-2 1
Chloroform Methylene chloride Carbon tetrachloride	1,1,2-Trichloroethane	Viryf chloride	Hexachlorobutadiene	Take to the second seco			Acenachthalene	Acenaphihene	Acetonitrile	Acetophenone	2-Acetytaminofluorene Acrolein	Acrylonitrie		Aldrin	N.A.	Aldrin 4-Amhobiphenyl	Aldrin 4-Aminobiphenyl Antine	Aldrin Anthrobipheryl. Anthracene Anthracene	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin	Aldrin 4 Aminobphemyl Anilrae Anilrae Anilrae Arocko 1232 Arocko 1232 Arocko 1232 Arocko 1248 Arocko 1254 Arocko 1250 Arocko 1254 Arocko 1254 Arocko 1260 Belta BHC	Aldrin	4-Anthrobephenyl	Aldrin	Aldrin	Aldrin
NA	7.7	- F	Î			Taklo Chara is see as		Yes	YC	Ace	Y. Y.	YCL			Ald	A.A.	AAA	Aria Aria	Ara Ara Ara Ara Ara Ara Ara Ara Ara Ara	55 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	## ## ## ## ## ## ## ## ## ## ## ## ##	한 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A A A A A A A A A A A A A A A A A A	+ + + + + + + + + + + + + + + + + + +	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A A A A A A A A A A A A A A A A A A	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A A A A A A A A A A A A A A A A A A
NA				··· ——————————————————————————————————		Y Y				-		_	_																						
F025 (Spent Filters or NA						¥Z	_			•	_		_	•																					

268.43 TABLE CCW.—CONSTITUENT CONCENTRATIONS IN WASTES--Continued

ABOUND A		language laineamann		7	CAS number	Waslewsters	Llors	Nonwastewaters	bwatera
101-55-3 0.055 (*) 15 15 16 16 16 16 16 16	Wasta coda	PE-QU	See also	Constituent	hezardous constituent	Concentration (mg/I)	Notes	Concentration (mg/kg)	Notes
71-36-3				4-Bromophenyl phenyl	101-55-3	0.055	ε	18	ε
86-68-7 86-68-7 86-68-7 10-16-9 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-47-8 106-87-8 111-44-1 106-87-8 107-88-8 107-88-8 108-88-88-8 108-88-88-88-8 108-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88-8 108-88-88-88				n-Buhri atcohol	_	*	•	**	ŧ
56-23-5 0.055 (*) 2.5 56-23-5 0.055 (*) 2.5 56-23-5 0.055 (*) 0.13 106-17-8 0.053 (*) 106-17-8 0.053 (*) 106-17-8 0.055 (*) 106-17-8 0.055 (*) 111-44-1 0.057 (*) 111-44-1 0.057 (*) 111-44-1 0.055 (*) 111-44-1 0.055 (*) 114				Buty benzy obthalate		200	CE	7 6	C
56-23-5 0.0057 (*) 8.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				2-sec-BuM-4.6-	88-85-7	900	Œ		CE
56-23-5 0.057 (*) 6.6 67-16-0 0.0033 (*) 0.13 106-47-8 0.0033 (*) 1.01 116-40-80-7 0.057 (*) NA 126-89-8 0.057 (*) NA 126-89-8 0.057 (*) NA 111-41-1 0.033 (*) 7.2 111-44-4 0.033 (*) 7.2 111-44-4 0.033 (*) 7.2 111-44-4 0.033 (*) 7.2 111-44-4 0.033 (*) 8.6 106-80-7 0.018 (*) 8.6 106-81-8 0.055 (*) 8.6 106-81-9 0.055 (*) 8				dinitrophenol.			;		
75-15-0 0.014 (?) NA 106-47-9 0.0033 (?) 106-47-9 0.045 106-80-7 0.045 (?) 106-87-1 106-80-7 1124-48-1 0.057 (?) NA 111-61-1 0.057 (?) 16-60 1111-61-1 0.053 (?) 16-60 1111-61-1 0.053 (?) 16-60 111-64-4 0.053 (?) 16-60 111-64-4 0.054 (?) 16-60 1107-05-1 0.005 (?) 16-60 1108-94-1 0.056 (?) 16-60 1108-94-1 0.056 (?) 16-60 1108-94-1 0.056 (?) 16-60 1108-94-1 0.056 (?) 16-60 1108-93-4 0.052 (?) 16-60 1108-93-4 0.052 (?) 16-60 1108-93-4 0.052 (?) 16-60 1108-93-4 0.053 (?) 16-60 1108-94-1 0.050 (?) 16-60 1108-94-1 0.050 (?) 16-60 1108-93-4 0.052 (?) 0.007				Carbon tetrachloride	56-23-5	0.057	£		ε
108-97-8 0.0033 (7) 1.08-97-8 0.013 (7) 1.08-97-8 0.010 (7) 1.08-97-8 0.010 (7) 1.08-97-8 0.010 (7) 1.08-97-8 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.010 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.011 (7) 1.08-97-9 0.0023 (7) 0.0027				Carbon disulfide	75-15-0	0.014	ε		
106-47-8 0.46 (?) 16-47-8 0.46 (.) 16-47-8 0.057 (.) 17-48-1 0.057 (.) 17-48-1 0.057 (.) 17-48-1 0.057 (.) 17-48-1 0.057 (.) 17-48-1 0.057 (.) 17-48-1 0.058 (.) 10-48-1 0.058				Chlordane	67-74-8	0.0033	E	_	Ξ
100-90-7 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.057 (*) KA-1 156-99-9 0.058 (*) KA-1 156-99-9 0.058 (*) KA-1 156-99-9 0.058 (*) KA-1 156-99-9 0.058 (*) KA-1 156-99-9 0.059 (*) KA-1 156-9 0.059 (*) KA-1 156-9 0.0				p-Chloroaniline	106-47-8	0.48	E		Ξ
124-89-8				Chlorobenzene	108-90-7	0.057	ε		ε
126-89-8				Chlorobenzilate	610-16-6	0.10	Ξ		
124-46-1			-	2-Chloro-1,3-butadlene	126-99-6	0.057	Ξ		
75-00-3 0.27 (1) 111-41-4 0.033 (1) 7 1 111-44-4 0.033 (1) 7 111-44-4 0.033 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 111-44-4 0.035 (1) 7 1100-94-1 0.35 (1) 7 1100-93-4 0.035 (1) 7 1100-93-4 0.033 (1) 7 11-95-7 0.77 (1) 7 1100-93-4 0.023 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.77 (1) 7 11-95-7 0.033 (1) 7				Chlorodibromomethane	124-48-1	0.057	£		ε
111-44-4 0.033 (7) 7 7 6 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Chloroethane	75-00-3	0.27	Ξ		ε
111-44-4 0.033 (?) 67-66-3 0.046 0.0				bis(2-Chloroethoxy)	1-10-111	0.036	Œ		ΞΞ
111-44-4 0.033 (P) 67-66-3 0.046 (P) 19-64-3 0.046 (P) 19-64-3 0.055 (P) 19-64-3 0.055 (P) 19-64-3 0.018 (P) 19-64-3 0.018 (P) 107-05-1 0.036 (P) 107-05-1 0.036 (P) 108-94-1 0.036 (P) 106-93-4 0.023 (P) 106-93-4 0.023 (P) 106-93-4 0.023 (P) 106-64-8 0.023 (P)				methane.			•		•
67-66-3 00.06 (?) 58-50-7 0.018 (?) 74-87-3 0.018 (?) 81-6-7 0.003 (?) 85-57-6 0.004 (?) 107-65-1 0.003 (?) 108-94-1 0.004 (?) 108-94-1 0.004 (?) 108-94-1 0.008 (?) 108-94-1 0.008 (?) 108-94-1 0.008 (?) 108-93-4 0.002 (?) 108-95-3 0.011 (?) 108-95-3 0.011 (?) 108-95-3 0.011 (?) 108-95-3 0.002 (?)				bis(2-Chloroethyt) ether	111-44-4	0.033	€	7.2	ε
39639-32-9 0.055 (1) 58-50-7 0.018 (1) 74-67-3 0.19 (1) 81-8-7 0.055 107-65-1 0.035 107-65-1 0.036 1108-94-1 0.37 1106-83-4 0.028 (1) 74-85-3 0.11 (1) 94-75-7 0.023 (1) 63-18-0 0.023 (2)				Chloroform	67-66-3	0.048	ε	5.6	Ξ
\$5-50-7 74-67-3 61-6-7 91-6-7 0.055 65-67-6 0.056 107-05-1 216-01-9 0.059 108-04-1 108-04-1 108-03-4 108-03-4 0.011 108-03-4 0.012 108-03-4 0.023 (1) 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4 0.00 108-03-4				bis(2-Chlorolsopropyf)	39636-32-9	0.055	Ξ.	7.2	ΞΞ
59-50-7 74-67-3 0.16 81-6-7 0.055 89-6-7 0.054 107-05-1 0.056 108-67-6 0.059 0.059 108-84-7 0.019 108-94-1 0.028 (*) 108-03-4 0.019 (*) 108-03-4 0.028 (*) 108-03-4 03-4 03-4 03-4 03-4 03-4 03-4 03-4				ether.			•	!	•
91-6-7 91-6-7 0055 107-05-1 107-05-1 108-04-7 108-04-1 108-04-1 106-03-4 106-				p-Chloro-m-cresol	59-50-7	0.018	ε		3
91-6-7 95-67-6 107-05-1 216-01-9 0.059 0.059 0.059 0.011 108-94-1 108-94-1 108-93-4 0.11 106-93-4 0.11 106-83-4 0.11 106-83-4 0.11 106-83-4 0.11 107-05-8 (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9				Chloromethane (Methyl	74-87-3	910	:€		Ξ
91-6-7 107-65-8 107-65-8 107-65-9 218-01-9 00.59 00.11 108-94-7 108-94-1 108-93-4 108-93-4 00.11 74-95-3 00.11 (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (8) (9) (9) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1				chloride).					-
107-05-1 216-01-6 26-46-7 96-46-7 108-94-1 106-93-4 106-93-4 106-93-4 106-93-4 106-93-4 106-93-4 106-93-4 106-93-4 107-11-6				2-Chloronaphthalene		0.055	ε		ε
107-05-1 218-01-9 0.059 0.77 108-94-1 106-93-4 106-93-4 0.11 106-93-4 0.11 106-93-4 0.11 106-93-4 0.11 106-93-4 0.11 106-93-4 0.12 106-93-4 0.12 106-93-4 0.13 106-93-4 0.13 106-93-4 0.14 106-93-4 0.15 106-93-4 106-93-				2 Chlorophenol	95-57-8	0.044	ε		Ξ
216-01-9 0.059 (*) 96-46-7 0.11 (*) 108-84-1 0.36 (*) 108-83-4 0.028 (*) 77-95-3 0.11 (*) 84-75-7 0.72 (*) 73-64-8 0.023 (*)				3-Chloropropylene		9000	ε		:=
96-46-7 0.11 (*) 108-94-1 0.36 (*) 106-93-4 0.028 (*) 74-95-3 0.11 (*) 94-75-7 0.72 (*) 73-64-8 0.023 (*)				Chrysene		0.059	Đ		Ξ
108-94-1 0.36 (*) (*) 106-94-1 0.36 (*) (*) 106-93-4 0.028 (*) (*) 94-75-7 0.72 (*) 0.00 77-64-8 0.023 (*) 0.00		_		o-Cresol		0.1	Ξ		ε
108-94-1 0.36 (*) 98-12-8 0.11 (*) 108-93-4 0.028 (*) 74-95-3 0.11 (*) 94-75-7 0.72 (*) 72-84-8 0.023 (*)				Cresol (m. and p-	***************************************	0.77	ε		Ξ
108-84-1 0.36 (*) 106-83-4 0.028 (*) 74-85-3 0.11 (*) 84-75-7 0.72 (*) 73-64-8 0.023 (*) 0.00				isomers).					•
86-12-8 0.11 (*) 106-93-4 0.028 (*) 74-95-3 0.11 (*) 84-75-7 0.72 (*) 73-54-8 0.023 (*)				Cyclohexenone	108-94-1	0.36	Ξ		
106-93-4 0.028 (*) 74-95-3 0.11 (*) 94-75-7 0.72 (*) 53-19-0 0.023 (*) 77-54-8 0.023 (*)				1,2-Dibromo-3-	96-12-8	0.1	Ξ		Ξ
106-93-4 0.028 (*) 74-95-3 0.11 (*) 94-75-7 0.72 (*) 63-19-0 0.023 (*) 72-64-8 0.023 (*)				chloropropane.			•		
74-95-3 0.11 (*) 84-75-7 0.72 (*) 63-19-0 0.023 (*) 0.00				1,2-Dibromoethene	106-93-4	0.028	E		ε
74-85-3 0.11 (!) 94-75-7 0.72 (!) 0.00 0.23 (!) 0.00				(Ethytene dibromide).			•		
84-75-7 0.72 (!) 63-18-0 0.023 (!) 0.00 72-64-8 0.023 ('!) 0.00				Dibromomethane		5.0	£		ε
63-18-0 0.023 (*)				2,4		0.72	Ξ		Ξ
63-18-0 72-64-8 0.023 (*)				Dichlorophenoxy.					•
72-64-8 0.023 (*)				Scene acid (z, 4:D).			•		•
				000.00		0 0 0	``		` =

ε	ε	Ξ	ε	ε	•	ε	ΞΞ	ΞΞ	ΞΞ	-	ε	:ε	Ξ	ΞΞ	-	€	ε	ε	ε		ε		ε	Ξ	ε	Ξ	ε	ε	Ξ	Ξ	ε	ε	ε	ε	***************************************	***************************************	***************************************	ε	ε	ε	ε	ε	ε	ε	ε	Ξ	ε	ε
0.007	0.067	0.087	0.007	8.2	¥	6.2	8	6	7.2	!	7.2	7.2	8	33		=	Ξ		•		=		0.13	28	=	58	82	2.3	991	991	- - -	28	28	Ξ;	¥	ž	ž	120	0.2	9900	0.13	0.13	0.13	0.13	33	360	0.0	160
ε	E	£	ε	Ξ	ε	Ξ	ε	: €	ΞΞ	·	ε	Ξ	Ξ	Ξ	•	€	ε	ε	ε		Ē		Ξ	ε	ε	ε	ε	£	ε	Ξ	ε	ε	ε	ε	Ξ	€:	€:	€	ε	ε	ε	Ξ	£	ε	ε	ε	ε	Ē
1000	0.031	0.0039	0.0039	0.055	0.061	0.038	0.088	0000	0.23		0.059	0.21	0.025	0.054		0.044	0.044	0.85	0.036		0.036		0.017	0.20	0.036	0 047	0.057	0.32	0.28	0.12	0.32	0.55	0.017	0.0	0.52	0.087	0	0.12	0.017	0.023	0.029	0.029	0.0028	0.025	0.34	0.24	0.057	0.12
3424-82-6	12-55-9	789-02-6	50-29-3	53-70-3	192-65-4	541-73-1	95-50-1	108-46-7	75-71-8		75-34-3	107-08-2	75-35-4			120-03-2	87-65-0	78-87-5	10061-01-5		10081-02-6		60-57-1	B4-66-2	105-67-9	131-11-3	84-74-2	100-25-4	534-52-1	51-28-5	121-14-2	808-20-2	117-64-0	621-64-7	155-38-4	122-66-7	7-120	123-81-1	208-04-4	8-86-66	33213-6-5	1031-07-8	72-20-8	7421-83-4	141-78-6	107-12-0	100-41-4	60-29-7
o.p. DDE	p.pUDE	o.p. DDT	p.p. 001	Dibenz(a,h) anthracene.	Dibenzo(a.e) pyrene	m-Dichlorobenzene	o Dichlorobenzene	p-Dichlorobanzana	Dichlorodifluorameth-	₽∪@.	1, t-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	frans-1,2.	Dichloroethylene.	2,4-Dichlorophenol	2,6-Dichlorophenol	1,2-Dichloropropane	cis-1,3-	Dichloropropane.	17879-1,3-	Dichloropropene.	Deldrin	Diethyl phthalate	2,4-Dimethyl phenol	Demethyl phthalate	Ol-n-butyl phithalate	1,4-Dinitrobenzene	4,6 Dinitro-o-cresol	2,4 Dinitrophenol	2.4 Dinitrololuene	2.6 Dinitraloluene	Di-n-octyl phthalate	Din propylatrososmins	Diphonylamine	1,2-Diphenyi hydrazina	Upphanyl nirosanine	1, 4-Dioxana	Osullolon	Endosullan I	Endosulian II	Endosulfan sulfate	Endrin	Endrin aldehyde	Elhyl acotate	Ethyl cyanide	Ellyl benzene	Ethyl ether

268.43 TABLE CCW.—CONSTITUENT CONCENTRATIONS IN WASTES—Conlinued

	Commercial chamical		Beard hetebase	CAS number	Wastewaters	alors	Nonwasiewalers	waters
Wasie code	oman	See also	constituent	hazardous constituent	Concentration (mg/f)	Notes	Concentration (mg/kg)	Notes
			bis(2-Ethylhexyl)	117-81-7	0.20	ε	86	=
			phthelate.			•	:	2
			Ethyl methacrylate	97-63-2	7.0	ε	9	ε
			Ethylene oxide	75-21-8	0.12	£	¥	
			Famphur	52-85-7	0.017	ε	50	ε
			Fluoranthene	206-44-0	0.068	ε	8	εε
			Fluorene	86-73-7	0.059	Ξ	9	ΞΞ
			Fluoratrichloromethane	75-69-4	0.020	ΞΞ	8	Ξ
			Heptachlor	76-44-8	0.0012	Ξ	0.066	Ξ
			Heptachlor epoxide	1024-57-3	0.018	ε	0.066	ε
			Hexachlorobenzene	110-74-1	0.055	ε	37	Ξ
			Hexachlorobutadiene	87-68-3	0.055	ε	28	Ξ
			Hexachlorocyclopente-	77-47-4	0.057	ε	99	Ξ
			dlene.			•		•
			Hexachlorodibenzo-		0.000063	ε	1000	ε
	_		furans.			•		;
			Hexachlorodibenzo-p-		0.000063	Ξ	1000	ε
			dioxins.			•		3
	,		Hexachloroethane	1-21-19	0.055	ε	28	ε
			Hexachloropropene	1688-71-7	0.035	ε	28	Ξ
			Indeno(1,2,3-	183-38-5	0.0055	Ξ.	0.2	ε
			c,d)pyrene.					•
			Iodomethane	74-88-4	0.19	ε	89	ε
			Isobutanol	76-83-1	9.0	ε	130	ε
			Isodrin	465-73-6	120.0	€	990.0	ε
			tsosafrole	120-58-1	0.001	€	2.6	ε
			Керопе	143-50-8	0.0011	€	0.13	ε
			Mathacrytonlinie	126-98-7	0.24	ε	3	ε
			Methanof	67-56-1	2.0	£	ž	-
			Methapyrilene	91-60-5	190.0	ε	5.5	ε
			Methorychlor	72-43-5	0.25	£	0.18	Ξ
			3-Melhylcholanthrene	56-49-5	0.0055	ε	5	ε
			4.4-Methylene-bis-(2-	101-14-4	0.50	Ξ	35	ΞΞ
			chloroaniline).			•		•
			Methylene chloride	75-08-2	0.089	€	33	ε
			Methyl ethyl ketone	78-93-3	0.28	E	36	Ξ.
			Methyl Isobutyl ketone	108-10-1	0.14	€	33	Ξ
			Methyl methacrylate	90-62-6	0.14	E	160	Ξ
			Methy	66-27-3	0.018	£	ž	
			methansulfonate.					
			Methyl parathlon	~	0.014	ε	4.6	ε
	_		Naphthalene	91-20-3	0.059	ε	=======================================	ε

	ε	ε	ε	ε	ε	***************************************		ε	:	ε	:	ε	Ξ	ε	ε	Ξ	ε	•	ε		ε		ε	ε	ε	ε	ε	***************************************	ε	ε	ε	ε	ε	ε	ε	;	ε	1	Ξ	ε	:	ε	•	ε	ε		ε
- 42	28	Ξ	28	58	2	¥2		- 4	:	2.3	:	2.3	· 6	38	97	37	1000		100.0	-	9 .		7.4	2	3.4	6.2	9.	¥X	9	9.5	2	22	7.8	7.9	2		100.0	• 60 6	00.0	42	;	42		9.6	37		- 50
Ξ	ΞΞ	Ξ	ε	ε	E	<u> </u>	-	ε	:	ε	:	ε	Ξ.	Ξ	ε	Ξ	Ξ		ε		ε		E	Ξ	ε	ε	£	£	Ξ:	Ξ	ε	ε	Ξ	Ξ	ε	;	<u>-</u>	- 6	<u> </u>	ε	-	€	•	£	£		Ē
1 65 0	0 028	0.068	0.32	0.12	0 0	9		0.40	:	0.40		0.40	0.013	0.013	0.014	0.055	0.000063		0.000063		0.055		0.000	0.081	0.059	0.039	0.021	0.00	0 0 0 0	0.087	0.014	0.081	0.72	0.72	0.055	-	0.000063		500000	0.057		0.057		0.056	0.030		0.080
8-05-10	100-01-6	88-82-3	99-55-8	100-05-7	53-18-5	R-0/-70		824-16-3	!	10595-95-6		59-69-5	100-75-4	930-65-2	56-38-2	608-93-5					82-68-8		8-99-29	62-44-2	82-01-8	108-85-2	298-02-2	85-44-9	23850-58-5	129-00-0	110-66-1	94-59-7	93-72-1	83-76-5	95-94-3					630-20-6		79-34-8		127-18-4	58-90-2		108-88-3
2. Naohihviamina	p-Nitroanline	Vitrobanzane	5 Nitro-o-tohidine	Mitrophenol	N-Nitrosodiethylamine	Nitrosodimethyle.	- dim	N-Nitrogo-di-n-	butylemine.	N Nitrosomethyl-	ethylamine.	N-Nitrosomorpholine	N-Nitrosopiperidine	N-Nitrosopyrrolldine	Parathion	Pentachlorobenzena	Pentachlorodibenzo-	furens.	Pentachlorodibanzo-p-	dloxins.	Pentachlorontroben-	zene.	Pentachlorophenol	Phenacetin	Phenanthrane	Phenol	Phorate	Phthalic anhydrida	Pronamide	Pyrene	Pyridine	Safrole	Silvex (2,4,5-TP)	2.4,5-T	1,2,4,5,-	Tetrachlorobenzene.	Tetrachlorodibenzo-	Total Conditions	doctor	1.1.12-	Telrachioroethane	1,1,2,2.	Tetrachloroethane.	Tetrachloroethytene	2,3,4,6-	Tetrachlorophenot.	Toknene

SESSESSE

Notes Norwastewaters Concentration (mg/kg) Notes 268.43 TABLE CCW.--CONSTITUENT CONCENTRATIONS IN WASTES--CONTINUED Wastewaters 0.22 1.2 35 1.4 1.4 1.4 1.2 0.062 0.37 0.28 0.37 0.28 0.28 0.28 0.28 0.28 0.28 0.042 0.042 0.053 0.053 0.11 Concentration (mg/l) 20.82-1 120.82-1 71-55-6 78-00-5 78-01-6 85-06-4 86-06-2 96-18-4 76-13-1 67-12-5 16964-6 6 1440-36-0 1440-36-0 1440-36-0 1440-41-1 1440-41-3 1440-41-3 1440-62-0 1740-22-4 1740-22-4 1740-62-2 1740-62-2 1740-62-2 1740-62-2 1740-62-2 1740-62-2 1740-62-2 1740-63-2 1740-63-2 1740-63-2 1740-63-2 1740-63-2 1740-63-2 7439-82-1 7440-47-32 7439-82-1 85-01-8 129-00-0 108-86-3 75-01-4 128-72-7 Regulated hazardous constituent Naphthalene Pentachlorophenol... Phenanihrane Cadmlum Chromkum (Total)... Copper Xylene(s)
Cyanides (Totel)
Fluoride
Sulfide Chromium (Total). Lead...... Toluene Xylenes (Total)... Lead. phosphate. Vinyl chloride... Barium Beryllium Thallium..... Morcury Nickel Antimony Table CCWE in 268.41... Table CCWE in 288.41. also See Commercial chemical name Waste code <u>8</u> K002

APPENDIX F DESCRIPTION OF RETAINED OPTIONS

APPENDIX F

TABLE OF CONTENTS

<u>Description</u>	<u>Page</u>
Spill Control Options	. 1
Stormwater Collection and Storage Options	. 8
Treatment Options	14
Alternative Water Transfer Options	24
Monitoring Options	34

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS

Spill Control Options

Option 4.4.3 Construct Centralized Tank Farm for Spill Control/Capture

Option Components and Basis of Conceptual Design A.

Storage - The volume of tankage required for this option could vary between wide limits. For instance, to provide the existing "live" capacity in the spill control ponds (A-1, A-2, B-1, B-2 and C-2) would require 69.5 acre-feet of storage.

For the A- and B-series ponds, 20.5 acre-feet is required. This volume is equivalent to the basin runoff generated by a 1- to 2-year storm which would require 6.7 million gallons of tankage and a major construction effort. The peak runoff rate associated with a 1- to 2-year, 6-hour storm is approximately 80 cfs in each drainage, but, it is not practical to pump at 80 cfs because of the size of pump required. Since this pumping rate cannot practically be achieved, runoff contaminated by spills will still need to be diverted to the existing spill ponds for temporary storage.

The C-2 pond accepts both spills and normal stormwater runoff. To equal its live capacity of 49 acre-feet in tanks would be impractical. The peak runoff rate to C-2 is also beyond the practical scope for diverting stormwater (i.e., 40 cfs for a 5-year event).

This option could be altered enough to be beneficial and feasible by using a lower pumping rate and smaller storage tanks (250,000 gallons). The dimensions of a 250,000gallon tank are 42 feet in diameter and 24 feet high. A single tank would serve each of the A-, B- and C-series drainages as a primary response measure. The existing spill control ponds would be maintained for initial capture and reserve capacity. Water in the tanks would be sampled, treated if necessary and then either discharged or disposed.

Piping - Approximately 4500 feet of 8-inch diameter PVC pipe would be required to carry flows from Ponds A-1, B-1 and C-2 to the centralized tanks.

Pumps - Three pump stations rated at 1600 gallons per minute (gpm) each would be utilized to pump water from A-1, B-1 and C-2 to the centralized tanks. These highvolume pumps would be effective in isolating a nominal amount of contaminated runoff.

В. Conceptual Cost Estimate

Tankage @ \$1/gallon	\$750,000
Piping @ \$30/foot	135,000
Pumps @ \$70,000/cfs or \$250,000/pump station	<u>750,000</u>
- · ·	\$1,635,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would provide additional spill control/capture facilities since the existing spill containment pond network would need to remain in place as a back-up system. The use of tanks would allow a spill to be isolated from the environment to a greater extent than is possible with the ponds.

C.2 Funding and Schedule Constraints

A centralized tank can be implemented over a period of time since the existing spill control ponds will remain as a back-up system. Additional tanks could be added later. Earthwork will be required to prepare a site for the tanks.

C.3 Cost-effectiveness

A centralized tank farm would require more piping than the placement of separate tanks on each drainage, but less site preparation for tank construction.

C.4 Versatility

This option would add versatility to Rocky Flats Plant's (RFP's) pond management system since it would allow a spill to be contained and isolated while allowing the existing ponds to be available to capture a second spill or contaminated storm runoff event.

C.5 Operable Unit (OU) Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Sediments would be deposited in the existing ponds and would require maintenance over time. Significant sediment accumulations would not be expected in the tanks.

Option 4.4.4 Construct Tanks for Spill Control/Capture on Each Drainage

A. Option Components and Basis of Conceptual Design

Storage - The volume of tankage required for this option could vary. To equal the existing "live" capacity in the basin spill ponds (A-1, A-2, B-1, B-2 and C-2) would require 69.5 acre-feet of storage. For the A- and B-series ponds, this volume is equivalent to the runoff generated by a 1- to 2-year storm and would require 6.7 million gallons of tankage and a major construction effort. The peak runoff rate associated with a 1- to 2-year, 6-hour storm is approximately 80 cfs in each drainage, but, it is not practical to pump 80 cfs because of the size of pumps required. Since this pumping rate cannot practically be achieved, runoff contaminated by spills would still need to be diverted to the existing spill ponds for temporary storage.

Similar conditions exist on the C drainage where 49 acre-feet of the live storage is currently available. The peak inflow rate for a 5-year storm is 40 cfs. Pumping at the peak flow rate and providing equivalent storage would not be practically feasible.

This option could be altered enough to be beneficial and feasible by using a lesser pumping rate and smaller storage tank capacity in each of the basins (250,000 gallons). The dimensions of each tank in each of the three drainage basins would be 42 feet in diameter and 24 feet high.

Piping - Approximately 500 feet of 8-inch diameter PVC pipe will be required to carry flows from a pump station just upstream of each of the ponds (A-1, B-1 and C-2) to the tanks.

Pumps - Three pumps, one for each tank, would be required. These pumps would be rated at 1600 gpm so that they could be able to isolate a nominal amount of contaminated runoff.

B. Conceptual Cost Estimate

Tankage @ \$1/gallon	\$ 750,000
500 feet Piping @ \$30/foot	15,000
Pumps @ \$70,000/cfs or \$250,000/pump station	750,000
	\$1,515,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would provide additional spill control/capture facilities since the existing spill containment pond network will need to remain in place as a backup system. The use of a tank allows a spill to be isolated from the environment to a greater extent than is possible with the ponds. This option provides larger storage capacity compared to Option 4.4.3.

C.2 Funding and Schedule Constraints

Tanks could be installed over a period of time, since the existing spill containment ponds would remain as a back-up system. Additional tanks could be added later. A considerable amount of earthwork would be required to prepare a site for tanks of this size.

C.3 Cost-effectiveness

Tanks placed in each basin would require less piping than a centralized tank farm, but a centralized tank location would require less site preparation for construction. This option can be compared directly to Option 4.4.3 (construct centralized tank farm for spill control/capture) for cost-effectiveness. This option results in a greater expense since a higher percentage of cost would be devoted to tanks rather than pumps and piping.

C.4 Versatility

This option is versatile since it would allow a spill to be contained and isolated and keep the existing ponds available to capture a second spill or contaminated storm runoff event. This option provides more versatility than a centralized tank farm because it places a separate spill containment tank in each basin and provides a greater total volume of tanks.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Sediments would tend to accumulate in the existing ponds and would require maintenance over time. Significant sediment accumulations would not be expected in the tanks.

Option 4.4.8 Utilize Existing Ponds A-1, A-2, B-1 and B-2 for Spill Control/Capture

A. Option Components and Basis of Conceptual Design

Storage - Utilize existing ponds for storage and maximize "live" storage to the extent possible. The current maximum drawdown is to the 30 percent capacity level for all spill containment ponds. An analysis should be conducted to determine if this maximum drawdown can be increased for any or all of the spill containment ponds in order to provide more "live" storage.

B. Conceptual Cost Estimate

Negligible costs would be required to implement this option.

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would provide two storage facilities in series on each of the A and B drainages. The C drainage would have a single storage pond. This would allow for system redundancy which increases the opportunity for isolation of a spill. This option could provide additional spill control/capture volume by utilizing more "live" storage than currently exists and would not depend on pumps or pipes to capture contaminated runoff.

C.2 Funding and Schedule Constraints

This option requires minimal expenditure and could be implemented immediately. Funding should be provided to address dam maintenance and dam safety concerns which were raised in the Army Corps of Engineers (COE) report released in 1993 (COE, 1993).

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS

(Continued)

C.3 Cost-effectiveness

This option could be implemented for minimal cost and would provide effective spill control storage. Providing storage in ponds is more economical than storage in tanks.

C.4 Versatility

The use of four spill control/capture ponds is a versatile option because it allows for runoff contaminated by spills to be isolated from the remainder of the pond system.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Sediments would accumulate in the ponds and would require maintenance over time.

Option 4.4.9 Consolidate Existing Spill Control Ponds to One Per Drainage

A. Option Components and Basis of Conceptual Design

Storage - Consolidation of ponds would most likely involve enlargement of the largest spill pond on each drainage, namely Ponds A-2 and B-2. Providing a comparable storage volume to that provided by the existing ponds would require an increase in Pond A-2's volume by 3 acre-feet (a 20 percent enlargement), resulting in a depth increase of 1 foot, and an increase to Pond B-2's volume by 1.1 acre-feet (a 20 percent enlargement), resulting in a 1-foot increase in depth.

B. Conceptual Cost Estimate

A-2 enlargement @ \$50,000/acre-foot	\$150,000
B-2 enlargement @ \$50,000/acre-foot	60,000
	\$210,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option could provide a simplified operating procedure for spill control/capture and would reduce the number of sampling locations. However, this option would limit system redundancy by leaving no volume in reserve for spills and less ability to isolate spills as compared to two ponds per drainage.

C.2 Funding and Schedule Constraints

DRAFT

Should modification of the dams be required for safety, these activities could disturb or cover existing sediment which may be contaminated (COE 1993). The dam might have to be bypassed during construction.

C.3 Cost-effectiveness

The cost of consolidating storage facilities would not be offset by any increase in spill volume.

C.4 Versatility

This option would be less versatile operationally for isolating spilled material than Option 4.4.8 (Utilize Existing Ponds A-1, A-2, B-1, B-2 and C-2 for Spill Control/Capture). It would also be less versatile for longer-term clean-up operations which may require the use of one pond for spill control while the other is remediated.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Future sediment deposition would go to only one spill containment pond location per basin rather than two per basin. The amount of sediment deposited would not increase or decrease from existing conditions.

Stormwater Collection and Storage Options

Option 4.5.1 Maintain and Continue Using Existing On-line Stormwater Ponds

Option Components and Basis of Conceptual Design A.

> Monitoring - This option would implement recommendations from the Corps of Engineers report (COE 1993) concerning increased monitoring of the phreatic water surface in the terminal ponds dam embankments through the installation of piezometers and continued analysis of structural integrity to assure dam safety.

> Surface Water System Improvements - This option would provide modifications to the following bypass pipes or channels as follows:

> A-series Ponds - Increase the capacity of the A-series bypass pipe which normally carries flow past the spill containment ponds (A-1 and A-2) to Pond A-3. This is a 42-inch corrugated metal pipe (CMP) with a capacity of 90 cfs. When the capacity is exceeded, which begins to occur during a six-hour storm event with a return period of two years, excess flows begin to fill A-1 and sometimes A-2. This can reduce or eliminate the available live volume for spill control/capture and may increase the volume of water requiring treatment.

Improvements would include modifications to the existing gate structure and a concrete-lined channel. Details of this option are contained in the Drainage and Flood Control Master Plan (EG&G, 1992).

B-series Ponds - Increase the capacity of the B-series bypass pipe which normally carries flow around Ponds B-1, B-2 and B-3 to B-4 and B-5. This bypass pipe is a 48-inch CMP with a capacity of 160 cfs. When the capacity is exceeded, which begins to occur for a six-hour storm event with a return period of five to ten years, excess flows will enter B-1, B-2 and B-3. This can reduce or eliminate available live volume for spill control/capture and for isolation of STP effluent storage.

These improvements would include a new concrete-lined channel as detailed in the Drainage and Flood Control Master Plan (EG&G, 1992).

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

C-series Ponds - The Woman Creek Bypass Canal (WCBC) is designed to carry flow from Woman Creek around Pond C-2. Pond C-2 captures flow from the south side of the plant site via the South Interceptor ditch. WCBC features a concrete stream diversion structure immediately upstream of Pond C-2 which diverts Woman Creek flows through seven 60-inch culverts to the bypass canal. As originally constructed, the capacity of the WCBC was in excess of the 100-year, 6-hour peak flow of 730 cfs. A recent EG&G report, "Woman Creek Bypass Canal Report 1991" (SWD-008-92), dated June 18, 1992 by Doug Murray (EG&G), describes large reductions in the flow capacity due to vegetation growth and related vegetative debris. The report also states that current flow capacity is estimated at 260 cfs, or slightly less than the 25-year return period flow. When this capacity is exceeded, flows begin to enter C-2, potentially reducing the ability of C-2 to contain stormwater runoff of spills from the south side of the plant site and mixing stormwater with potentially contaminated water requiring testing and possibly treatment.

A component of this option would be to take immediate measures to restore the capacity of the WCBC. There are also deficiencies due to vegetative growth in the West Interceptor Canal and the West Walnut Creek Bypass Canal (both are west of the plant site) and the South Interceptor Ditch leading to Pond C-2. These problems should also be remedied as part of this option. The components of this improvement are detailed in the Drainage and Flood Control Master Plan (EG&G, 1992).

B. Conceptual Cost Estimate

DRAFT

Dam Safety Monitoring	\$ 100,000
Surface Water System Improvements	
A-series ponds	1,000,000
B-series ponds	900,000
C-series ponds (restore capacity of	500,000
South Interceptor Ditch and Woman	
Creek Bypass Channel)	
Clean out 2 channels west of plant site	500,000
	\$3,000,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

The measures included in this option would increase the ability of the stormwater ponds to receive the stormwater, thereby allowing the spill ponds to be available for their intended purpose. The improved bypass capacity would reduce the potential for stormwater flows to overwhelm the spill control ponds and carry contaminants downstream.

C.2 Funding and Schedule Constraints

Existing systems could remain operational during the construction phase and would not impede current pond management. Projects could be implemented in phases.

C.3 Cost-effectiveness

This option would provide immediate, recognizable benefits for a relatively low cost.

C.4 Versatility

This option would provide versatility by addressing problems associated with stormwater management, as well as spill control/capture. This option would increase the ability to isolate and monitor STP effluent as needed.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Sediments would accumulate in the ponds and bypass canals and would require periodic maintenance. Erosion would be controlled during construction activities.

Option 4.5.4 Consolidate Existing Stormwater Ponds to One Per Drainage

A. Option Components and Basis of Conceptual Design

Storage - Consolidation of ponds would most likely involve enlargement of the largest of the existing ponds, namely A-4 and B-5. Pond C-2 would not be modified since it is currently the only stormwater pond on the C drainage receiving core area runoff. To provide a comparable volume of storage provided by the existing ponds would require an increase in Pond A-4's volume by 35 acre-feet (a 35 percent enlargement), resulting in a depth increase of 7.5 feet, and an increase of 1 acre-foot to Pond B-5's volume (a 2 percent enlargement), resulting in a 0.2-foot increase in depth.

B. Conceptual Cost Estimate

A-4 enlargement @ \$50,000/acre-foot	\$1,750,000
B-5 enlargement @ \$50,000/acre-foot	50,000
	\$1,800,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Consolidating stormwater ponds can provide a simplified operating procedure. The safety of the existing stormwater dam can also be addressed by this option. However, hazards associated with a dam failure would be increased since all basin storage would be located in one pond. This option would reduce the number of sampling points.

Consolidating the ponds could result in contamination to larger volumes of water, possibly resulting in increased treatment requirements. This option would reduce system redundancy and lessen reserve storage potential in the event of contamination.

For this option, future sediment deposition would accumulate in only one stormwater location per basin. This option would mean the loss of the capability to isolate STP effluent in Pond B-3.

C.2 Funding and Schedule Constraints

The proposed modification of the terminal dam could disturb existing sediment which may be contaminated. Flows would have to bypass the terminal pond during construction.

C.3 Cost-effectiveness

The costs would not be offset by any increase in storage volume.

C.4 Versatility

This option would be less versatile for isolating incoming flows for monitoring and/or treatment than Option 4.5.1 (maintain and continue using existing online stormwater ponds).

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Future sediment deposition would accumulate in only one pond location per basin. This project would require moving large quantities of earth, and may create waste which may not be disposed on-site.

Option 4.5.12 Construct Storage Tanks for STP Effluent Only

A. Option Components and Basis of Conceptual Design

Storage - The volume of storage required for this option is a function of the incoming effluent flow rate and the required holding time. Assuming these tanks would be used on a routine basis (rather than for "upsets" or spill collection) and that any tank must be batch-sampled rather than continuously-sampled, the tanks would be sized by computing the product of inflow and holding time. A reasonable turnaround time for Segment 5 analytes which include organics, metals and radionuclides is 21 days. Using a design flow of 0.15 million gallons per day (MGD) and a contingency factor of 25 percent, a storage volume of 4 million gallons would be required. Four one-million-gallon tanks (each sized at 80 feet diameter and 28 feet tall) would occupy at least 1 acre of land.

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

Pumps - A pump station rated at 250 gpm would be required to keep pace with the rate of STP effluent discharge and to deliver the discharge to the tanks.

B. Conceptual Cost Estimate

Tanks @ \$1/gallon	\$4,000,000
Pump station @ \$50,000 each	50,000
,	\$4,050,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Reducing or eliminating STP effluent discharges from the B-series pond system would reduce nutrient loadings which routinely cause algae blooms in the ponds. Discharges from the tanks could be sent directly to Segment 4 following sampling.

Potential STP effluent upsets would be independently contained and would not impact routine stormwater management operations.

C.2 Funding and Schedule Constraints

This option's use of four tanks would allow it to be implemented over a period of time. Each tank could come on-line at different times.

C.3 Cost-effectiveness

There would be a high cost to this option without substantial justification. High operations and maintenance costs would be incurred for repairing, cleaning, disinfecting, inspecting and operating these tanks.

C.4 Versatility

These tanks would need to be dedicated to STP effluent and would not be available for stormwater-related spill control (in order to avoid commingling of clean effluents with contaminated stormwater) and thus the option would have limited versatility.

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Soil disturbance would occur during site preparation for tank construction. Maintenance activities would include periodic disposal of accumulated sediment in the tanks.

Treatment Options

DRAFT

Option 4.6.1 Construct Mobile Treatment Units for Multi-pond Use

A. Option Components and Basis of Conceptual Design

Mobile treatment units would be utilized as needed to address stormwater (or spills in spill containment ponds) which does not meet water quality standards for discharge or transfer.

Pumps - Two to three portable/submersible pumps of varying sizes (15/50/100 gpm) would be required for pond pumping.

Piping - Approximately 200 to 300 feet of flexible piping would be needed to transfer water to mobile unit from the pond(s) and to the discharge point from the mobile unit.

Treatment Units - Single or multiple mobile units would be necessary for processes including pretreatment and multi-stage treatment depending on constituents and volumes to be treated. A rented mobile treatment unit used at RFP may not be able to be cost-effectively decontaminated and used elsewhere. The purchase cost is therefore a consideration of this option.

Power Source - 220 volt wiring or a generator would be required.

B. Conceptual Cost Estimate

Rental of a 15-gpm multi-stage (e.g., ion \$750 to exchange/GAC/precipitation) system with operator 1000/day Purchase of a mobile 15-gpm multi-stage exchange/GAC/precipitation) system with operator 150,000 Pumps and piping 20,000 Total Costs are dependent on the duration of treatment operations.

C. Comparative Analysis Criteria

C.1 Risk Reduction

Minor risk reduction is expected from this option because it is unlikely that treatment could reduce contaminants of concern (COCs) to significantly lower levels than the capabilities of the current technology and facilities. However, mobile treatment unit(s) offer the most strategic method for addressing COCs at problem areas when detected. This option may also reduce risk associated with slug discharges resulting from spills.

C.2 Funding and Schedule Constraints

Renting a few portable treatment systems would minimize capital construction costs. Construction/Assembly of the system could involve a long lead time because of the uniqueness of the system and the small number of contractors with this type of design/construction expertise.

C.3 Cost-effectiveness

Mobile treatment units could allow treatment of multiple sources with one unit, thereby resulting in higher cost effectiveness over using individual systems for each source. Mobile treatment systems could also contracted from suppliers of such services which would be economical. Cost-effectiveness would nonetheless be low, however, due to the low COC levels. Cost-effectiveness would be further reduced if a variety of portable systems are required to ensure treatment for an acceptable range of COCs. Another reduction in cost-effectiveness would occur if numerous systems are required to treat a single source if portable systems are purchased for stand-by use, or if extensive influent storage is required.

It is possible that if a mobile treatment unit is used to treat a highly-contaminated volume of water, the unit could not be decontaminated to an acceptable level for use by the contractor elsewhere and would need to be purchased.

C.4 Versatility

This option would be extremely versatile because multiple sources could be addressed with a single system. Multiple stage systems would be most versatile because they would be applicable to a wide range of COCs. Treatment could also be contracted on an as-needed basis.

C.5 OU Interactions

This option is independent of all known OU actions.

C.6 Waste Generation

Depending on the treatment type implemented, filter cake or spent medias may be classified as low-level wastes. Waste volumes would be minor because of low constituent levels

Option 4.6.2 Construct Individual Treatment Facilities at Each Pond

A. Option Components and Basis of Conceptual Design

Storage - 1000 to 2000 gallons of influent storage (equalization) would be required at each treatment facility.

Piping - To transfer water to the treatment system from influent storage and to the discharge point from treatment system, approximately 1000 total feet of piping would be required.

Pump Stations - Pumps and controls would be required at each pond with approximately 100 gpm capacity each. A 100-gpm pumping rate would be consistent with the expected treatment rate.

Treatment Systems - Multi-stage treatment facilities would be housed in a completely enclosed structure. Facilities could be shared by 2 to 3 ponds, depending on locations, to reduce costs.

Power Source - 220-volt wiring or a generator would be required.

B. Conceptual Cost Estimate

4-5 Storage facilities @ \$20,000 each	\$100,000
Piping @ \$30/foot	30,000
Pumps @ \$70,000/cfs or \$20,000 each	100,000
4-5 Treatment facilities @ \$5M-\$10M each	35,000,000
	\$35,230,000

Annual operation and maintenance costs

\$250,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Only minor risk reduction is expected because it is unlikely that treatment could reduce COCs to significantly lower levels than the capabilities of the current technology and facilities. This option may reduce risk associated with slug discharges resulting from spills. Individual treatment systems will allow for optimum design capacity and technology.

C.2 Funding and Schedule Constraints

Individual treatment systems would be relatively expensive with total costs for all required facilities ranging from \$5-50 million and would stretch the 5-year time frame due to construction requirements.

C.3 Cost-effectiveness

Placement of individual systems near sources would be cost-effective with respect to piping and pumping costs. Cost-effectiveness would be low, however, because the already low COC levels are not likely to be greatly reduced. Cost-effectiveness would be further reduced if extensive influent storage is required. Individual permanent systems would also be relatively expensive when compared to a mobile treatment unit.

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

Versatility C.4

Versatility would be less than for mobile rented (or purchased) treatment units because those units could be requested for a specific treatment need following sampling.

C.5 **OU** Interactions

This option is independent of all known OU actions.

C.6 Waste Generation

Depending on the treatment type implemented, filter cake or spent medias could be classified as low-level wastes. Waste volumes would be relatively minor because of low constituent levels.

Option 4.6.7 Use Existing OU Treatment Facilities

A. Option Components and Basis of Conceptual Design

Treatment Systems - This option would utilize treatment systems currently available at the RFP including: OU 1, OU 2 and OU 4 treatment facilities.

In addition to OU treatment facilities, the 374 Evaporator was also evaluated for available capacity and potential use. The following table shows the characteristics of the existing OU treatment facilities and the 374 Evaporator:

Facility	Available Capacity	Technology	Influent Storage
OU 1 Treatment Facility	30 gpm, 16 hrs./day	ion exchange, UV oxidation	15,000 gal.
OU 2 Treatment Facility	45 gpm, 24 hrs./day, 330 days/yr.	neutralization, precip./co-precip., sedimentation, microfiltration, GAC	10,000 gal.
OU 4 Treatment Facility	51,000 gal/day, 150 - 365 days/yr.	straining, evaporation (VC and flash evap.)	1,380,000 gal.
374 Evaporator	None	decontamination, evaporation	850,000 gal.

Piping - 20,000 feet of piping would be required to transfer pond water to treatment systems for maximum versatility.

Pump Stations - Pumps and controls are required at each pond with approximately 100-gpm capacity each.

Tank Trucks - Tanker truck(s) to haul source water to treatment systems could be a viable alternative to pipe systems.

B. Conceptual Cost Estimate

Piping @ \$30/foot	\$300,000
Pump stations @ \$70,000/cfs	160,000
Treatment systems	0
Tank trucks @ \$100,000/truck	
	\$360,000-460,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would likely result in minor risk reduction because it is unlikely that treatment could reduce COCs to significantly lower levels. This option could reduce risk of slug discharges resulting from spills. Existing treatment facilities would reduce risks associated with COCs for which there is on-site treatment technology with available capacity.

Coordination of treatment of new influent sources with the influent source that existing facilities were originally designed to treat would not necessarily reduce overall site risks.

C.2 Funding and Schedule Constraints

Funding would not be a major issue for this option because only operational and maintenance (0&M) costs would increase. O&M cost data for existing facilities is not available for evaluation, but it is likely that incremental O&M costs would be minimal.

C.3 Cost-effectiveness

Use of existing systems makes the treatment component of this option costeffective. The piping needed to convey water from the ponds to the treatment facilities and additional influent storage are the most costly components of this option. Trucking water to be treated could be a more cost-effective approach.

C.4 Versatility

This option is versatile because it expands capabilities of existing systems to include treatment of additional sources.

C.5 OU Interactions

This option may impact OU planning efforts by utilizing the remaining capacity at existing facilities. This option would require changes to the ROD:

C.6 Waste Generation

Waste volumes such as filter cakes and spent media would be increased with increased treatment rates. Wastes generated from new sources would be additive to current wastes and, therefore, classified similarly to low-level wastes.

Option 4.6.8 Expand Existing OU Treatment Facilities

A. Option Components and Basis of Conceptual Design

This option contains the same basic components which were required for Option 4.6.7, including expansion of existing treatment facilities.

Treatment Systems - OU facilities with potential for expansion include OU 1 (expand by 30 gpm), OU 2 (expand by 20 gpm) and OU 4. Additionally, the 374 Evaporator (expand by 10 to 15 gpm) which is located out of the OUs was evaluated for expansion.

B. Conceptual Cost Estimate

Discussions with RFP treatment personnel indicate that it would require significant capital costs to expand most existing treatment facilities. Costs to expand buildings housing treatment equipment may be particularly costly. Expansion costs are wideranging depending on technologies expanded or added to existing OUs. Such costs are

estimated in the range of \$100,000 to add additional ion exchange or GAC units to \$20 million to add new technologies in expanded buildings.

Expansion of the 374 Evaporator facility from 32 gpm to 45 gpm would cost approximately \$22 million.

All expansion costs would be additive to costs summarized in Option 4.6.7 which would be required to distribute pond water to existing OU treatment facilities.

C. Comparative Analysis Criteria

C.1 Risk Reduction

Minor risk reduction is expected because it is unlikely that treatment could reduce COCs to significantly lower levels. This option could reduce risk associated with slug discharges resulting from spills. Existing treatment facilities would reduce risks associated with COCs for which there is on-site treatment technology that could be expanded.

Coordination of treatment of new influent sources with the influent sources that existing facilities were originally designed to treat might not reduce overall site risks.

C.2 Funding and Schedule Constraints

Expansion of the A-4 tent facility to include new treatment technologies (i.e., radionuclide removal) would provide a versatile and strategically located facility.

C.3 Cost-effectiveness

Expansion of existing facilities, where possible, would be most cost-effective than constructing new facilities. Costs to transfer wastes to existing facilities would not be prohibitive.

C.4 Versatility

This option would be versatile because it expands capabilities of existing systems to include treatment of additional sources and allows centralized treatment for multiple source streams.

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS

(Continued)

C.5 **OU** Interactions

This option would require changes to the ROD.

C.6 Waste Generation

Waste volumes such as filter cakes and spent media would be increased with increased treatment. Wastes generated from new sources would be additive to current wastes and, therefore, classified as low-level waste.

Option 4.6.9 Consolidate Treatment Facilities at Pond A-4 for Use by Entire Pond System

A. Option Components and Basis of Conceptual Design

Treatment Systems - This option would use the existing A-4 system including filter bags and GACs. The A-4 system currently contains a fully available capacity of approximately 1.7 MGD for organics treatment. This capacity could potentially be expanded.

At a minimum, radionuclides and metals treatment should be added to A-4's treatment capabilities.

Piping - Approximately 10,500 feet of piping would be required to collect pond water at Pond A-4 facilities.

Pump Stations - Pumps and controls at each pond with approximately 100 gpm capacity would be required.

Influent Storage - A relatively large influent storage tank with an approximate 1 MGD capacity would be necessary to fully utilize the A-4 treatment facility.

В. Conceptual Cost Estimate

Storage facility	\$ 250,000
Piping @ \$30/foot	315,000
Pump stations @ \$70,000/cfs	160,000
Treatment facility expansion	2,000,000
	\$2,725,000
Operation and maintenance costs	\$ 250,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Risks associated with slug discharges resulting from spills could be reduced. A comprehensive and strategically located treatment facility with expanded treatment capacity could provide effective risk reduction.

C.2 Funding and Scheduling Constraints

A single, large treatment system could be prohibitively expensive; however, because the existing A-4 organics treatment system could be expanded for multistage treatment it would reduce capital costs.

C.3 Cost-effectiveness

A single, large system at Pond A-4 would reduce piping and pumping costs. Use of A-4 facilities would offer a convenient, centrally located treatment system at which there would be no conflicting treatment objectives other than treating pond water. Also, there is significant capacity (1.7 MGD) currently available at A-4.

C.4 Versatility

A single system designed to treat multiple sources would be inherently versatile. Simultaneous treatment of multiple sources could be difficult.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

Wastes generated from new sources would be similar to wastes previously generated by the system. Upgrades to the existing system to expand treatment capabilities would generate different types of wastes (e.g., metals sludge, radionuclides, etc.).

Alternative Water Transfer Options

Option 4.7.1.1 Recycle STP Effluent for On-site Industrial Use

A. Option Components and Basis of Conceptual Design

Pumping - Two pumping stations would be required for this option. One pumping station of approximately 200 gpm would be required to transfer STP effluent from surface storage to the recycle system surge tank. A second pump station of approximately 100 gpm would pump water out of the surge tank, through backflow preventers, and into the industrial water system against an existing head of approximately 50 feet.

Piping - Approximately 4000 feet of 8-inch diameter piping would be required to transfer water to the surge tank. This pipeline could be surface layed, or buried, depending on the design life of the system and type of pipe material selected.

Storage - Storage facilities would be required for this option for STP effluent prior to recycling efforts. Additional water storage required for this option would include a surge tank estimated at a 100,000-gallon capacity, located adjacent to and connected to the plant's industrial water supply header.

Treatment - STP effluent meeting Segment 5 criteria and other benchmarks identified in Table 3-1 would require no treatment other than suspended solids removal prior to its use as non-potable industrial water. This would be accomplished by a 4-stage, multimedia filter located just after the first pump station, and sized at 200 gpm.

Controls - Automatic/Manual controls would be required to prevent overfilling of the surge tank. Manual operation of the system would be required to protect pumping equipment and monitor effluent storage levels and filter performance.

B. Conceptual Cost Estimate

Construction	\$1,500,000
Operations and maintenance/year	200,000
	\$1,700,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Health-based reductions in risk would be nominal. STP effluents under this option would already meet Segment 5 water quality criteria, and no additional treatment (other than sediment filtration) would be employed. Minor risk reduction would be possible through reduced downstream discharges. A minimal reduction could occur in pond storage levels, thereby reducing dam failure risks.

C.2 Funding and Schedule Constraints

This option would have minor cost and schedule constraints due to its relatively low cost, use of standard construction techniques and use of accepted technology.

C.3 Cost-effectiveness

This option would be a cost-effective approach to reducing downstream discharges and dam safety concerns and would also provide cost savings through decreased raw water purchases. However, the demand for recycled water for industrial use would likely decrease as industrial operations are phased out.

C.4 Versatility

Due to the availability of other recycle sources (from the 374 Evaporators) and the limited usage of raw water, this option cannot accomplish the total recycle of STP effluent. The maximum available raw water demand at RFP would be approximately 17 MG/yr, whereas the STP effluent volume would be approximately 55 MG/yr. STP effluent not being recycled would be discharged off-site according to current practices.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

DRAFT

This option would generate a small volume of waste in the form of used filter media and backflush waters from the multi-media filter. Estimated volumes would be approximately 5 cubic yards of low-hazard granular filter material (sand, grit, etc.) and 800-1000 gallons of non-toxic backwash water annually.

Option 4.7.1.2 Recycle Pond Water to RFP Industrial Water Supply

A. Option Components and Basis of Conceptual Design

The components and basis of design for this option are identical to those for recycling STP discharges (Option 4.7.1.1). Any surface water for which recycling is proposed, would require a pump station and filter at the water source location, piping, surge tank and controls.

B. Conceptual Cost Estimate

A-3, A-4 or B-5 recycling	
Recycling facilities	\$2,800,000
Operations and maintenance	200,000
-	\$3,000,000
C-2 recycling	
Recycling facilities	\$1,100,000
Operations and maintenance	200,000
•	\$1,300,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option has the same risk reduction potential as Option 4.7.1.1, with the following addition:

Average annual stormwater runoff collected and discharged at RFP is approximately 120 million gallons (MG). Runoff is divided between drainages as follows: A-series - 55 MG, B-series - 45 MG, C-series - 20 MG. With an estimated industrial usage of 17 mg per year, no drainage could routinely achieve zero discharge, although during drier years, zero discharge of Pond C-2 would be achievable.

Option 4.7.1.4 Directly Spray Evaporate Pond Water (Aerosol Spray Method) On-site

A. Option Components and Basis of Conceptual Design

Storage - This option assumes that storage facilities would be the existing surface water impoundments.

Piping - Piping to supply water to the spray heads would use 6-inch diameter aluminum or high-density polyethylene pipe. A 6-inch centrifugal pump would supply approximately 1200 linear feet of pipe with spray heads at 30- to 40-foot intervals.

Pumps - Either diesel-powered or electric-powered pumps capable of delivering 200-gpm flow rates and 30-35 psi pressure would be required for an aerosol spray system.

Spray Heads - Spray heads would be high-volume, riser-type atomizing spray, in order to maximize the volume of water evaporated.

System Layout - The system would spray water over the pond from which it came. Piping with spray heads could be located adjacent to the pond, or designed to float in the pond. Edge-located piping would be easier to install, maintain and operate.

Controls - Spray systems would be manually operated (start and stop) to ensure they are not operated in weather conditions which are not suitable for evaporation.

B. Conceptual Cost Estimate

Construction cost is estimated at \$300,000 to \$400,000 per pond. Utilizing 4 ponds will result in a total cost of \$1,200,000 to \$1,600,000.

O&M costs are estimated at \$30,000 to \$40,000 annually using plant site staff.

C. Comparative Analysis Criteria

C.1 Risk Reduction

Health-based reductions in risk would not be expected for water meeting Segment 5 standards. Spray evaporation operations would reduce or eliminate transfers between non-discharging ponds. Reduced pond storage levels would also improve dam safety.

C.2 Funding and Schedule Constraints

This option would have no cost or schedule constraints due to its low cost, low level of technology and ease of installation.

C.3 Cost-effectiveness

This option would not be a cost-effective method of reducing downstream discharges from stormwater ponds, and would only be cost-effective for small-volume ponds (i.e., spill control ponds) for which lowered pond levels may prevent the need to discharge or transfer from these ponds.

C.4 Versatility

Spray evaporation systems could be installed and operated at any pond meeting the required water quality criteria. Each spray head would be capable of evaporating 100 to 150 gallons per day (gpd) on an average basis. Limitations due to climatic conditions would result in seasonal operations (approximately April-October) and a need to store water prior to evaporation. A typical system comprising 40 heads and operated 180 days per year could evaporate approximately 900,000 gallons annually.

C.5 OU Interactions

This option interacts with planning and management aspects of OUs 5, 6 and 7, but does not preclude any actions to be taken during characterization or remediation of those OUs.

C.6 Waste Generation

No wastes would be generated by this option.

Option 4.7.1.5 Mechanically Evaporate Pond Water (Evaporative Coolers) On-site

A. Option Components and Basis of Conceptual Design

Pumping - Either diesel or electric-powered pumps would be required to pump water from storage to a new evaporator.

Evaporator Design - Mechanical evaporators would require heat inputs to promote evaporation. An evaporator capable of evaporating 10 MG/year (a typical size) would require a dependable source of energy in the form of waste heat, electrical energy, or other sources of power. System components would typically include pumping and feed controls, heat exchangers, heating elements, controls, recirculation piping, pre-filtration equipment and corrosion protection features.

B. Conceptual Cost Estimate

A 10 MG/year evaporator is conceptually estimated at \$20-25 million, based on previously prepared estimates and industry guidelines.

O&M costs are estimated at \$400-500 thousand per year using plant site staff.

C. Comparative Analysis Criteria

C.1 Risk Reduction

The risk reduction potential for mechanical evaporation would be minimal. Evaporated water would meet Segment 5 water quality criteria and other benchmarks identified in Table 3-1 prior to evaporation.

C.2 Funding and Schedule Constraints

The high level of funding required for this option, the large scale of construction effort involved, and the expected permitting requirements for this option all impose significant schedule constraints on this option. An estimated completion schedule is 3 to 5 years.

C.3 Cost-effectiveness

Mechanical evaporation of water meeting Table 3-1 benchmarks would not be cost-effective and would not represent a reasonable reduction in risk for the money spent.

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS

(Continued)

C.4 Versatility

Mechanical evaporators are large facilities that would require a high level of operational control to ensure they are functioning properly, cannot be relocated, and cannot be expanded beyond design capacity. Their versatility in addressing changing water management needs would be low. These evaporators could not be used for contaminated water.

C.5 OU Interactions

This option wold be independent of all known OU actions.

C.6 Waste Generation

Waste generated from operations (in the form of concentrates or sludges) or cleaning could be regulated and difficult to dispose or store.

Option 4.7.1.8 Transfer Interior Ponds to Pond A-3 to Maintain Spill Control Capacity

A. Option Components and Basis of Conceptual Design

This option transfers water meeting imposed water quality control criteria from interior spill control ponds to Pond A-3 for eventual discharge.

Pumping - A portable pump station of approximately 500 gpm would be required to transfer water from Pond A-2 to Pond A-3. Due to lack of electrical power availability, this pump would operate on gasoline or diesel fuel.

Piping - Transfer piping consisting of approximately 300 additional feet of 6-inch diameter high density polyethylene (HDPE) pipe would be required to create a discharge point to Pond A-3.

B. Conceptual Cost Estimate

Pump station		\$40,000
Valving		1,000
Piping		1,000
		\$42,000

C. Comparative Analysis Criteria

DRAFT

C.1 Risk Reduction

Transferring water that meets benchmarks identified in Table 3-1 would present no significant risk to human health and the environment.

DRAFT

C.2 Funding and Schedule Constraints

Due to its low cost, there would be no cost or schedule constraints for this option.

C.3 Cost-effectiveness

This option is a cost-effective method of maximizing available spill control capacity, thereby providing maximum protection to downstream waters.

C.4 Versatility

The pipeline used for this option could also be used to transfer water which requires treatment.

C.5 OU Interactions

This option has no OU interactions.

C.6 Waste Generation

No wastes would be generated by this option.

Option 4.7.2.9 Discharge Stormwater Ponds to Segment 4

A. Option Components and Basis of Conceptual Design

This option focuses on reduction of sampling efforts by discharging directly from ponds which meet Segment 4 standards and other benchmarks identified in Table 3-2 to downstream receiving waters.

Piping - Surface-laid piping necessary to discharge Ponds A-4, B-5 and C-2 to Segment 4 currently exists. Additional surface piping would be installed from Pond A-3 to a connection with the A-4 discharge piping north of Pond A-4.

Pumps - Pumps currently exist at Pond A-4, B-5 and C-2 for use in transfer or discharge operations. An additional pump would be installed at Pond A-3.

В. Conceptual Cost Estimate

Piping (A-3) at \$30/foot (1000')	\$30,000
Pump at A-3	_25,000
_	\$55,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Ponds A-4 and C-2 are currently discharged to Segment 4 in accordance with Segment 4 standards. Under current operational management, Ponds B-5 and A-3 would be monitored for a limited suite of indicator parameters (consistent with Segment 5 Standards) prior to transfer to Pond A-4 and discharge. Monitoring of these ponds for Segment 4 Standards and other Table 3-2 benchmarks, as required for discharges, is a more stringent requirement than currently exists. More stringent monitoring requirements are presumably more protective and thus represent a reduction in risk compared to current conditions.

C.2 Funding and Schedule Constraints

This option has no cost or schedule constraints due to its low cost, high use of existing facilities and ease of installation.

C.3 Cost-effectiveness

This option is a cost-effective method of managing stormwater discharges. Redundant sampling of Ponds A-3 and B-5 prior to transfer to Pond A-4 (which is in turn sampled prior to discharge) is eliminated in favor of a single, more stringent sampling event at Ponds A-3 and B-5. Operational costs would also be reduced by not handling A-3 and B-5 water a second time in Pond A-4.

C.4 Versatility

This option would provide greater versatility and flexibility than the current operational system. By discharging Ponds B-5 and A-3 directly to Segment 4, Pond A-4 would receive only a limited amount of routine inflow, making it available for non-routine storage of high flows resulting from spring runoff or large storm events. This pond would also be available to accept transfers of water from Ponds A-3, B-5 and C-2 that do not meet discharge standards, and would provide a central storage location that is adjacent to the existing A-4 treatment facilities.

C.5 OU Interactions

This option would maintain current capabilities to capture, store and monitor discharges and runoff from upstream OUs prior to off-site discharge. This option also would improve the operational flexibility of the ponds for dealing with future OU 5 and OU 6 remediation efforts and is consistent with expected final actions for water control and water management during cleanup operations.

C.6 Waste Generation

No wastes would be generated by this option.

DRAFT DRAFT DRAFT DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

Option 4.7.2.10 Pipe Water from Pond C-2 to Walnut Creek in On-Site Pipeline

A. Option Components and Basis of Conceptual Design

This option utilizes the existing transfer piping between C-2 and the Walnut Creek drainages to eliminate discharges to the Standley Lake basin.

Pumping - A permanent pump station of approximately 500 gpm would be required to transfer water from Pond C-2 directly to the Walnut Creek drainage below Pond A-4 or B-5. Due to lack of electrical power availability, this pump station would operate on gasoline or diesel fuel.

Piping - Transfer piping consisting of 8-inch diameter high density polyethylene (HDPE) pipe which currently exists between Pond C-2 and Ponds B-5 and A-4. A tee, two gate valves and approximately 300 additional feet of pipe would be required to create a discharge point below Pond A-4 or B-5.

B. Conceptual Cost Estimate

Pump station	\$80,000
Valving	10,000
Piping	1,000
	\$91,000

C. Comparative Analysis Criteria

C.1 Risk Reduction

Transferring water that meets benchmarks identified in Table 3-1 would present no significant risk to human health and the environment and would eliminate a perceived risk from residents in the Standley Lake basin.

C.2 Funding and Schedule Constraints

There would be no cost or schedule constraints for this option.

C.3 Cost-effectiveness

This option is a cost-effective method of reducing Pond C-2 discharges to Woman Creek and Standley Lake. This option cannot assure that Pond C-2 would not overtop during a flood event since runoff volume from an extreme event could exceed the storage capacity of C-2.

C.4 Versatility

The pipeline used for this option could also be used to transfer water to Pond B-5, Pond A-4 or directly to the Broomfield Diversion Ditch.

C.5 OU Interactions

This option would transfer water from the jurisdiction of OU 5 (Woman Creek) to the jurisdiction of OU 6 (Walnut Creek), but could be discontinued at any time and would not impact actions or planning efforts for these OUs under the Interagency Agreement (IAG).

C.6 Waste Generation

No wastes would be generated by this option.

DRAFT

APPENDIX F **DESCRIPTIONS OF RETAINED OPTIONS**

(Continued)

Monitoring Options

Option 4.8.3 Monitor Influent Streams

Basis of Conceptual Monitoring Plan A.

Influent stream water would be sampled and analyzed for the water quality parameters that are currently monitored at RFP during a pre-discharge sampling event with Colorado Department of Health (CDH). These parameters include gross alpha, gross beta, ammonia, nitrate/nitrite, sulfate, sulfide, TDS, TSS, bicarbonate/carbonate, chloride, fluoride, semi-volatile organics, volatile organics, cyanide, HSL metals, triazine herbicides, organochlorine herbicides, and organophosphorus pesticides.

Influent streams would also be monitored in real-time for flow and indicator parameters (pH, temperature, conductivity) using instrumented flumes, weirs and water quality probes.

Samples would be taken monthly on each of the three RFP drainages.

В. Conceptual Cost Estimate

Laboratory Analytical Costs Field (Sampling) Costs

\$2500

36 samples per year

\$2800 per sample \$100,800

C. Comparative Analysis Criteria

C.1 Risk Reduction

No risk reduction associated with potential chemical exposure would be achieved by this option. Influent stream monitoring does not provide earlier detection capabilities than monitoring pond water directly due to the fact realtime analytical methods are unavailable for chemical constituents of concern at the low detection limits required. Monitoring of indicator parameters could provide early indication of potential water quality problems.

C.2 Funding and Schedule Constraints

There would be no funding or schedule constraints associated with this option.

DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

C.3 Cost-effectiveness

Flow monitoring would promote efficient and cost effective pond water management by maximizing the planning time for pond water transfer or discharge operations. Monitoring of indicator parameters would be a costeffective method for early identification of potential water quality problems.

C.4 Versatility

This option would provide versatility by monitoring a large number of water quality parameters and would allow time for remedial action prior to transfer or release.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

No waste would be generated by this option.

Option 4.8.4 Monitor Ponds

A. Basis of Conceptual Monitoring Plan

Pond water would be sampled and analyzed at regular intervals (monthly, quarterly, or annually) for COCs and Segment 5 analytes to demonstrate compliance with the ambient water quality requirements of Table 3-1. Pond volumes, dam piezometers, and indicator parameters (pH, temperature, conductivity) would be monitored in real time to assist operational management and stay apprized of changing conditions.

Sampling efforts for this option include radionuclide-specific analysis for plutonium, americium and uranium which results in higher analytical costs.

Ponds A-1, A-2, B-1 and B-2 would be sampled quarterly. Ponds A-3, A-4 and B-5 and the Landfill Pond will be sampled monthly.

B. Conceptual Cost Estimate

Laboratory Analytical Costs Field (Sampling) Costs \$4000 300 \$4300 per sample \$275,200

64 samples per year

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would ensure that contaminants in ponds that are not transferred or discharged would be detected and remedial actions could be implemented as needed. Pond volume and dam piezometer monitoring would ensure dam safety considerations are accounted for and uncontrolled discharges would not occur. This option would be protective of human health and environment and would promote compliance with the numeric water quality criteria adopted for this Interim Measures/Interim Remedial Action (IM/IRA) Decision Document.

C.2 Funding and Schedule Constraints

There would be no funding or schedule constraints associated with this option.

C.3 Cost-effectiveness

Cost effectiveness is a function of the frequency of routine water quality monitoring compared to the frequency with which operational monitoring is conducted. Monthly or quarterly monitoring at ponds which are also monitored at a similar frequency for operational reasons is redundant and not cost effective. Quarterly or annual monitoring of non-discharging ponds would be cost effective in determining compliance with ambient water quality criteria. Frequent volume and piezometer monitoring would be very cost-effective compared to the potential impacts from a dam failure.

C.4 Versatility

This option would provide versatility by monitoring different ponds at different frequencies depending on the frequency in which a particular pond undergoes monitoring for operational purposes.

C.5 OU Interactions

This option would be independent of all known OU actions.

C.6 Waste Generation

No wastes would be generated by this option.

DRAFT DRAFT DRAFT DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS

(Continued)

Option 4.8.5 Monitor Transfers

A. Basis of Conceptual Monitoring Plan

Ambient pond water quality would be sampled and analyzed prior to transfer operations for the parameters that are currently monitored at RFP during a pre-discharge sampling event with CDH. These parameters would include gross alpha, gross beta, ammonia, nitrate/nitrite, sulfate, sulfide, TDS, TSS, bicarbonate/ carbonate, chloride, fluoride, semi-volatile organics, volatile organics, cyanide, HSL metals, triazine herbicides, organochlorine herbicides, and organophosphorus pesticides. Analytical results would be compared against Segment 5 criteria and other benchmarks identified in Table 3-1. During transfers, flows and indicator parameters (pH, temperature, conductivity) would be monitored in real time to assist operational management and provide early warning of changing water quality conditions.

B. Conceptual Cost Estimate

Laboratory Analytical Costs \$2500
Field (Sampling) Costs \$2800 per sample

12 samples per year \$33,600

DRAFT DRAFT DRAFT DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

C. Comparative Analysis Criteria

C.1 Risk Reduction

This option would ensure that contaminants that are both regulated and of particular concern would be detected in time to take remedial action prior to transfer to other ponds. This option would be protective of human health and the environment and would promote compliance with the numeric water quality criteria adopted for this IM/IRA Decision Document.

C.2 Funding and Schedule Constraints

There would be no funding or schedule constraints associated with this option.

C.3 Cost-effectiveness

This option would be a cost-effective method of determining compliance with benchmarks compared to monitoring for <u>all</u> Segment 5 parameters, many of which have never been detected in RFP waters.

C.4 Versatility

This option would provide versatility by monitoring a large suite of parameters prior to transfers and only indicator parameters (which would allow early detection of water quality problems) during transfers.

C.5 OU Interactions

This option would be independent of known OU actions.

C.6 Waste Generation

No wastes would be generated by this option.

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

Option 4.8.6 Monitor Discharges

A. Basis of Conceptual Monitoring Plan

Ambient pond water quality would be sampled and analyzed prior to discharge operations for the parameters that are currently monitored at RFP during a pre-discharge sampling event with CDH. These parameters would include gross alpha, gross beta, ammonia, nitrate/nitrite, sulfate, sulfide, TDS, TSS, bicarbonate/carbonate, chloride, fluoride, semi-volatile organics, volatile organics, cyanide, HSL metals, triazine herbicides, organochlorine herbicides, and organophosphorus pesticides. Analytical results would be compared against Segment 4 criteria and other benchmarks identified in Table 3-2. During discharges, flows and indicator parameters (pH, temperature, conductivity) would be monitored in real time to assist operational management and provide early warning of changing water quality conditions. Whole Effluent Toxicity Tests (WET) would also be conducted on discharged water as a check on overall water quality (toxicity), and to comply with current Federal Facilities Compliance Agreement (FFCA) requirements.

B. Conceptual Cost Estimate

Laboratory Analytical Costs	\$2500
Field (Sampling) Costs	300
	\$2800 per sample
18 samples per year	\$50,400
Laboratory Analytical Costs:	
for Ceriodaphnia sp.	\$275
fathead minnows	500
field (Sampling) costs	<u>300</u>
	\$1075 per sample
18 samples per year	\$19,350

C.1 Risk Reduction

DRAFT DRAFT DRAFT DRAFT

APPENDIX F DESCRIPTIONS OF RETAINED OPTIONS (Continued)

This monitoring option would ensure that contaminants are detected in time to take remedial action prior to downstream discharge, and would achieve regulatory compliance. Biomonitoring would provide an assessment of overall water quality, but would be insufficient to determine compliance with chemical-specific numerical standards and overall risk to downstream water.

C.2 Funding and Schedule Constraints

There would be no funding or schedule constraints associated with this option.

C.3 Cost-effectiveness

This option would be a cost-effective method of determining compliance with Segment 4 criteria compared to monitoring for all Segment 4 parameters, many of which have never been detected in RFP waters. Biomonitoring provides information on the overall toxicity and water quality at a minimal cost.

C.4 Versatility

This option would provide versatility by monitoring a large suite of parameters prior to discharge and only indicator parameters (which would allow early detection of water quality problems) during discharge.

C.5 OU Interactions

This option would be independent of known OU actions.

C.6 Waste Generation

No wastes would be generated by this option.

APPENDIX G EVALUATION OF PERSONNEL EXPOSURE FROM PROPOSED ALTERNATIVES

APPENDIX G EVALUATION OF PERSONNEL EXPOSURE FROM PROPOSED ALTERNATIVES

Evaluation of Risks to Personnel due to Inhalation

August 3, 1992 EG&G Memorandum from R.S. Roberts to S.A. Pettis: Risks due to Spray Evaporation of B-2 Pond

September 29, 1993 WWE Calculation Sheets on Estimated Air Emissions

October 8, 1993 EG&G Memorandum From R.M. Garren to G.V. Porter: Pond Water IM/IRA Air Emissions Evaluation

Evaluation of Risks to Personnel due to Water Ingestion

(C:\Rocky\TOAppG)

EVALUATION OF RISKS TO PERSONNEL DUE TO INHALATION

AUGUST 3, 1992 EG&G MEMORANDUM FROM R.S. ROBERTS TO S.A. PETTIS: RISKS DUE TO SPRAY EVAPORATION OF B-2 POND

LEGEG ROCKY FLATS

INTEROFFICE CORRESPONDENCE

DATE:

August 3, 1992

TO:

S. A. Pettis, Surface Water, Bldg. 80, X8615

FROM:

R. S. Roberts, Remediation Programs, Bldg. 80, X8508

SUBJECT:

RISKS DUE TO THE SPRAY EVAPORATION OF B-2 POND - RSR-016-92

A risk analysis was performed to evaluate the potential human health risk due to the spray evaporation of the B-2 pond. The results of this evaluation show that the carcinogenic risk due to this activity is 2.7E-10 and the Hazard Index is 4.5E-07. These values are well below the acceptable carcinogenic range of 1E-04 to 1E-06 and the acceptable Hazard Index of 1.0.

In order to calculate the above risks, it was assumed that an individual will live at the Rocky Flats Plant fence line for the next thirty years and that spray evaporation will continue for that period of time. This individual will be exposed to volatile organic compounds (VOC) that are volatilized from the spray head when water is sprayed over the B-2 pond. The VOCs volatilized during spray evaporation are transported from the spray head to the hypothetical individual at the fence line. This exposure scenario was reviewed and approved by the Department of Energy (DOE) and the Colorado Department of Health (CDH). All assumptions used in this analysis are outlined in Attachment I.

Attachment II shows the analytical results used in this risk analysis. Methylene Chloride, Acetone, 1,2-Dichloroethene and Trichloroethene were evaluated in this risk assessment. J and B qualified data were assumed to be present at the reported value.

If you have any questions or need support in presenting this information, please contact me.

dmf

Attachments:

As Stated (2)

 ∞ :

G M. Anderson

M. B. Arndt

R. C. Flory

D. S. Murray

D. M. Smith

SPRAY EVAPORATION RISK ASSUMPTIONS

A) Spray Evaporation Specifications

Average Flowrate = 1000 gallons\minute

Daily Exposure Duration = 10 hours\day

Annual Exposure Duration = 125 days\year

Duration of Spray Evaporation Activities = 30 years

B) Dispersion of Volatiles

CHIQ = (1(PI)(U)(SIGMA-Y)(SIGMA-Z))

PI = 3.1416 U = 4.7 meters\second SIGMA-Y = 110 meters SIGMA-Z = 43 meters Distance to Individual = 1.6 kilometers Stability Class = D

Assumptions were taken from the <u>Plan For Prevention Of Contaminant Dispersion</u>, dated February, 1992

Assume 100% volatilization from water

C) Inhalation of Volatilized Constituents

Intake = $(ER)(CHI\setminus Q)(IR)(DEF)(AEF)(ED)$ (BW)(AT)

ER = Emission Rate = Chemical Specific Value
CHI\Q = Dispersion Value
IR = Inhalation Rate = 0.83 m^3\hour
DEF = Daily Exposure Frequency = 10 hours\day
AEF = Annual Exposure Frequency = 125 days\year
ED = Exposure Duration = 30 years
BW = Body Weight = 70 kg

AT = Averaging Time = 70 Years (Carcinogens)

AT = Averaging Time = 30 Years (Non-Carcinogens)

Carcinogenic Risk = (Intake)(Slope Factor)

Hazard Index = Intake\Reference Dose

Slope Factors and Reference Doses used in this analysis were taken from the Integrated Risk Information System (IRIS) and the Health Effects Assessment Summary Tables (HEAST). The primary source was IRIS. Slope Factors and Reference Doses are current as of 7\30\92.

1A UDLATILE URGANIUS ANALYSIS DATA SHEET

EPA SAMPLE NU.

1 Pond B-2 6/22/92 1 NP50631 WC

Lab Name: ITAS-ST. LOUIS

ردائنے -----

Lab Code: ITAS

Case No.: --

SAS No.:

SUG No .: ---

Matrix: (soil/water) Water

Lab Sample 10: 2/09-60/

Sample wt/vol:

(g/ml) 전

Lab File ID: >E4065

Level: (low/med) LUW

Date Received: 40700700 06/23/92

% Moisture: not dec. -

Date Analyzed: 06/23/92

Column: (pack/cap) LAP

Dilution Factor: 1

	CAS NO.	CURCENTRATION UNITS:		
1			1 .	1
1	74-87-3	Chloromethane	1 10	ו טו
1	74-83-9	Bromomethane	1 10	រប !
1	75-01-4	Uinyl Chloride	1 10	IU I
1	75-00-3	Chlorosthans	1 10	IU,
!	75-09-2	Mathylena Chlorida	1 11	18
i	67-64-1	Acetone	1 18	1
1	75-15-0	Carbon Disulfide	1 5	IU
1	75-35-4	1,1-Dichlorosthens	1 5	١IJ
1	75-34-3	1,1-Dichioroethane	1 5	ıu
1	540-59-0	1,2-Dichlorosthene (total)	1 4	ıJ
1	67-66-3	Chloroform	1 5	ıu
.1	107-06-2	1,2-Dichloroethane	1 5	ıu
1	<i>7</i> 6-93-3	2-Butanona	1 10	IU .
2	71-55-6	1,1,1-Trichlorosthans	1 5	ΙU
i	56-23-5	Carbon Tetrachloride	1 5	IU
i	108-05-4	Vinyl Acetate	1 10	ıυ
1	75-27-4	Bromodichloromethane	1 5	IU
į	78-87-5	1,2-Dichloropropane	1 5	ıU
i	10061-01-5	cis-1,3-Dichloropropone	1 5	ΙU
1	79-01-6	Trichloroethene	1 4	1 3
1	124-48-1	Dibromochloromethene	1 5	IU
1	79-00-5	1,1,2-Trichloroethane	1 5	ΙU
1	71-43-2	Benzene	1 5	IU
1	10061-02-6	trans-1,3-Dichloropropens	1 5	ıυ
1	75-25-2	Bromoform	1 5	IU
Į	108-10-1	4-Methyl-2-Pentanone	1 10	lu
1	591-78-6	2-Hexanone	1 10	ıu
1	127-18-4	Tetrachloroethene	1 5	l U
1	79-34-5	1,1,2,2-Tetrachloroethane	1 5	ıu
1	108-88-3	Toluena	1 5	ıu
ı	108-90-7	Chlorobenzene	1 5	เบ
1	100-41-4	Ethylbenzene	1 5	וט
1	100-42-5	Styrene	. 5	וט
1	1330-20-7	Xylene (total)	1 5	טו
5			•	

NOOFT

G-below direct

SEPTEMBER 29, 1993 WWE SHEET ON ESTIMATED AIR EMISSIONS

WRIGHT WATER ENGINEERS, INC. Date 9-29-93 Sheet of	
Denver, Colorado 80211 Proj. Name_IwitrA	
7-1. (303) 480-1700 Des. By Mande Ckd. By	
bject Estimated Air Emmissions	
Potential AIR Emmisions for IWITRA Combined (Preferred) Option	
1) Spray Evaporation	
	
7 systems - 2 at Londfill, 2 at A-Z, leach at A-1, B-1, and B-Z	
	11
Each system will evaporate ~ 900,000 gallows over 180 days (5000 99)	day
A) Water Quality of Evaporated Water - Use sample mean from	
Table 1-11.3, or 1-8 (attached)	
for ambient concentration	
B) Diesel Pumps - 1 Diesel Pump per system	<u>.</u>
Usage - 8 molday x 180 days = 1440 hrs Fyel Consumption ~ 10/9a/pr	
Fuel Consumption = 101 gal/hr	-
	-
2) A-4 Discharge	
A) Diesel Pump	+
Usage - 24 hr Iday ~ 13 days/worth = 3744 hr/year Fuel Consumption ~ 3.3 gal/hr	-
Fuel Consumption 2 3.3 gal/hr	+-
	+
B) Diesel Generator for A-4 Tent (50 kw)	+
Usage - 10 holday for 80 days/year = 800 holyear	_
Fuel Consumption ~ 1.2 galler	-
2) 2 5 7- 3 -	
3) B-5 Transfer	
A) Diesel Rump	+
Usage - 24 hr/day - 9 days/worth = 2592 hr/year Fuel Consumption - 3:3 gal/hr	+
rue Lawamprion = 5.5 gal/hr	+
B) Diagly of Dia L (154)	-
B) Diesel Light Plant (15 kw)	
Fixel usuge ~ 10 hr/day ~ 9 days/month = 1080 hr/year	
TWELL USERS - 35 gal I'MC	+
4) C-2 Recycle System	_
TO C-2 Recycle system	-
A) from Propule Powered Pump 96 HP	-
Hange Propose Usage = 11.4 16/hr	+
Usuga 25 days/month for 6 wordhs 10 holday = 1500 holy	+
EN BUT 40 - ICA	+
5) A-4 Tent Propone System	+
Usage 10 hr /day x 180 days (est) = 1800 hr/year Fuel Consumption = 1800 hr/year	+
rue consumption 7 50 THE 1/2 19/60	
	;

WRIGHT WATER ENC 2490 West 26th Ave. Denver, Colorado 8021 Tel. (303) 480-1700 Subject	-Suite 100-A	Date <u>9-29-93</u> Proj. No. <u>901.004,450</u> Proj. Name <u>Im/IZA</u> Des. By <u>Mende</u>	Sheetof
Calculation Shee	t for A,RE	mm1810n) Estimate	
	3	Per Doug Murray - 56.	(ا
Evaparation	estimasa is	900, coe go l per syst	
		he Iday (daylight how 40 galluk (199/h.	
B-5 Transfer and			
		~ S @ ~ Boogpu	

OCTOBER 8, 1993 EG&G MEMORANDUM FROM R.M. GARREN TO G.V. PORTER: POND WATER IM/IRA AIR EMISSIONS EVALUATION

INTEROFFICE CORRESPONDENCE

DATE:

October 8, 1993

TO:

G. V. Porter, Surface Water Division, Bldg. T893A, X5661

FROM:

R. M. Garren, Air Quality Division, Bldg. 080, X8512 RMJ

SUBJECT:

POND WATER IM/IRA AIR EMISSIONS EVALUATION - RMG-013-93

This correspondence accompanies the attached set of calculations used to evaluate potential air emissions from a list of proposed options provided by the Surface Water Division (SWD) for the Pond Water Management Interim Measures/Interim Remedial Action (IM/IRA). The proposed options were evaluated to determine if an Air Pollutant Emission Notice (APEN) or permit application would be required for spray evaporation activities and the operation of propane and diesel-fired equipment. The options were outlined in a correspondence from Wright Water Engineers, Inc. dated September 29, 1993. The following is a summary of the evaluation:

- Evaluation of spray evaporation activities described in option 1 of the letter indicate that emissions are well below reportable levels and the impact on air quality is negligible.
- The diesel-fired pump mentioned in part B of option 1 will not require an APEN or permit application based on the actual hours of operation. In order to demonstrate compliance to the Colorado Department of Health (CDH), an operating log documenting hours of operation and fuel consumption (if possible) must be maintained.
- The diesel-fired pump mentioned in options 2 and 3 will require an APEN. A
 permit application will not be required based on the actual hours of operation. The
 Air Quality Division will require proper notification of implementation plans in
 order to prepare and submit the appropriate paperwork to the CDH.
- The diesel-fired generator mentioned in part B of option 2 will not require an APEN
 or permit application based on the actual hours of operation. In order to demonstrate
 compliance to the CDH, an operating log documenting hours of operation and fuel
 consumption (if possible) must be maintained.
- The diesel-fired light plant mentioned in part B of option 3 will not require an APEN or permit application. An operating log for this unit is not necessary.
- The propane-fired pump mentioned in option 4 will not require an APEN or permit application based on the actual hours of operation. In order to demonstrate compliance to the CDH, an operating log documenting hours of operation and fuel consumption (if possible) must be maintained.

G. V. Porter October 8, 1993 RMG-013-93 Page 2

• The Pond A-4 tent propane system mentioned in option 5 will not require an APEN or permit application. An operating log for this unit is not necessary.

Any deviation in the hours of operation or the equipment listed in these options that will affect air emissions will require a re-evaluation by the Air Quality Division. Please notify the Air Quality Division immediately if an option is selected that requires an APEN. If you have any questions concerning this correspondence, please contact me at X8512 or digital page 4281.

RMG

Attachment: As Stated

cc: R.C. Nininger C.A. Patnoe OCTOBER 7, 1993 WWE CALCULATION SHEETS ON PROPOSED OPTIONS Option 1 - Spray Evaporation 1×10-69/2×0.0022046 15/9 × - 1 2 = 8.345 E-9 16/921 8.345 E-9 Blgal or 0.008345 B/galE6 por 1 Mg/2 5000 gal/day , 180 days = 900,000 gal/yr Landfill total voc concentration = 238 mg/1 238 (.008345 15/galE6) (.9 galE6/4-) = 1.79 16/4-

Z units (1.7916/yr) = 3.58 16/yr TOTAL VOC BASED ON 100% Vol.

A-2 total Voc concentration = 32 mg/g 32 (.008345) (.9) = 0.24 lb/yr Total VOC 2 units (0,24 15/yr) = 0.48 15/yr Total Voc

A-1 total voc Conc = 32 mg/2 32 (.008345) (.9) = 0.24 16/yr Total VOC

B-1 total voc Long = 58 mg/1 58 (-008345)(.9) = 0.44 lb/yr Total voc

B-2 total Voc Conc. = 58 ug/1 58 (.008345)(.9) = 0.44 16/yr Total Voc in order to exceed reporting limits for HAPS, VOC'S is lead, Mg/e concentrations would have to be:

Individual poilutant levels are well below any of these levels

Option 1 Part B

Diesel Pump

= 0.37 tons/y NOx

Option 2 A-4 Oischarge

A. Biesel fump

B. Diesel generator for A-4 tent (50 km)

= 0.22 tonsk- NOX

100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.
100 SHELS EFEEASE \$ 500.

National Brand 42-89 42-89 42-89 42-89

Option 3 B-5 Transfer

A. Diesel Pomp

2592 hr/yr (3.3 gul/hr)(.469 15 Nox/gar) = 4011.6 Hyr NOx

AT 8760 hrs =
$$\frac{6.78}{6.78}$$
 tor/yr NOx

B. Diesel light plant $1080 \text{ hr/yr} (.35 \text{ g-1/hr}) (.469 15NOx/gal) = 177.3 \frac{16}{\text{lyr}} NQX$ AT $8760 \text{ hrs} = 0.72 \frac{1}{\text{ton/yr}} NOX$

Option 4 C-Z Recycle System

Propune Paverid pump (96 HP)

Propune Usage = 11,415/hr

11.4 15/hr = 2.7 gal/hr

4.235 15/gal

1500 hr/yr $(2.7 \frac{9al}{hr})(.134 \frac{15 \text{ Nox}}{9al}) = 562.45 \frac{15 \text{ Mox}}{9al} = 562.45 \frac{15 \text{ Mox}}{9al}$ At 8760 hrs = 1.44 ton/yr Nox = 0.28 ton/yr Nox

Option 5 A-4 Tent Propane System

propane usage 7.2 15/hr = 1.7 gal/hr 4.235 15/gcl

1800 hr/yr (1.7 gal/hr) (.139 16 NOx /gal) = 425.3 16/yr NOx

At 8740 hrs = 1.035 ton/yr NOx

42.89 SORHELSE FEESTS SOUNA 17.89 TO SHITTS FITE FASTS SOUNA 42.802 TO OPPOSE TO SOUNA 42.802 TO OPPOSE TO SOUNA FITE FITE FASTS SOUNA FITE FASTS SOUNA FITE FASTS SOUNA FITE FASTS SOUNA

A Brand Actional Brand Action

EVALUATION OF RISKS TO PERSONNEL DUE TO WATER INGESTION

G.1 Summary

A CERCLA risk analysis was performed to evaluate the resulting differences in risk from pond water management alternatives described in the Interim Measures/ Interim Remedial Action (IM/IRA) Decision Document. A steady state model of the pond water flow and the risk results from the Baseline Risk Assessment were used together to predict changes in risk resulting from different water management actions. "Worst case" large volume spills were postulated to occur in each drainage area and the risks calculated for different spill control alternatives. Water storage, collection, and transfer options for non-spill conditions were also evaluated.

G.2 Introduction

A CERCLA human health risk comparison was performed where applicable for the retained options discussed in Chapter 5 and described in Appendix F of this document. The purpose of this risk evaluation was to provide quantitative assessment on risks relative to each proposed alternative as a tool for the IM/IRA Decision process on proposed actions. A compartmental flow model of the Rocky Flats surface water ponds was developed in order to predict the contaminant concentrations in the individual ponds and the resulting human health risks for a variety of pond management alternatives. Current baseline risk levels calculated in the Baseline Risk Assessment (Appendix D, summarized in Section 2.5), were used together with the flow model to predict the resulting risk reductions of proposed alternatives for spill capture and water storage/ transfer.

G.3 Model Description

A flow model was developed for the surface water ponds on North Walnut Creek South Walnut Creek and Woman Creek. The ponds included in the model are Ponds A-1, A-2, A-3, A-4, B-1, B-2, B-3, B-4, C-1, C-2, and the Landfill Pond. The model base case represents steady state flow averaged over the calendar year 1992 and is given in Figure G-1: Pond Flow Model. The flow data used in model are given in the following tables:

- Table G-1: S. Walnut Creek Flows
- Table G-2: N. Walnut Creek Flows
- Table G-3: Regulated Discharges and Woman Creek Flows
- Table G-4: Average Pond Capacities

The sources of data used for water release rates, pond capacities, and transfer between ponds include the 1992 Rocky Flats Environmental Report, EG&G Surface Water Operating Logs and Summaries, and the EG&G Surface Water flow monitoring network. The values for annual precipitation and evaporation used in the model were the average values for the Rocky Flats Plant site of 16 inches and 40 inches respectively.

G.4 Model Use and Method of Comparison

The model described above was developed to predict the results of introducing perturbations in the system; changes in water flow (re-routing water, spray evaporation, or elimination of ponds) and the addition of a contaminant (spills) were evaluated. Other IM/IRA option categories such as treatment and monitoring options were not evaluated since the model could not be as easily applied to these cases.

For simplicity in modeling spills, the assumption is made that the entire amount of chemical considered is dumped into the receiving pond and then the spill action alternative occurs. Since spills are not steady state events, then only those flows appropriate to the spill event are carried from the base model to the spill model. Restated, credit is taken for pond operator actions to implement the spill control measures according to the spill control alternative being evaluated. The risks associated with spills are then compared for each alternative quantitatively.

The Baseline Risk Assessment for the pond water was limited to the future residential land use scenario and the ingestion of surface water only. Even though this is a highly unlikely scenario, it served as the upper-bound of risk for any scenarios on-site as well as any current or future scenarios for receptors using the water off the Rocky Flats plant site. However, when comparing alternatives which differ in the amount of water which is released off plant site, then one must select which receptor, future on-site, or current off-site is to be the basis of comparison. For this analysis, the future on-site receptor drinking water from the ponds is the scenario for comparison since the baseline risks were calculated in this way.

In addition, the retained options are also evaluated and compared for the potential to spread contamination off the Rocky Flats plant site.

G.5 Spills

The following three sections model spills of carbon tetrachloride, trichloroethylene (TCE), and nitric acid. In the case of each spill, the contaminant has two or three possible fates based on the spill capture alternative:

- Captured by the existing ponds (Ponds A-1 and A-2 in the cases of the carbon tetrachloride spill, pond C-2 in the TCE spill, and Ponds B-1 and B-2 in the nitric acid spill). This is the no action alternative).
- Captured by a tank
- Captured by a single pond equivalent to the existing ponds. (The TCE spill analysis does not model an equivalent pond.)

The analysis assumes that 100% of the contaminant enters the applicable interceptor pond, that there is no loss of contaminant en route. Additionally, the only pathway analyzed is ingestion of contaminated water.

Table G-1 below summarizes the different values of risk and hazard quotients (HQs) to a hypothetical on-site resident individual who ingests the contaminated pond water. The values for risk and HQs were obtained from Sections G.5.1, G.5.2 and G.5.3.

The baseline risk is derived from the risk assessment contained in Chapter 2. This risk assessment assumes that concentrations are as summarized in Tables D-2.1 through D-2.8 in Appendix D of this report.

Table G-1
Comparison of Risks and HQs from Different
Contaminant Spills and Different Pond Configurations

	Existing Ponds	Single Spill Control Pond	Tanks
Carbon Tetrachloride	1.7E-5	1.7E-5	4.9E-6
TCE	HQ=0.071	Not Analyzed	HQ=0.071
Nitric Acid	2.13E-5	HQ=0.54	HQ=0.54

It is noted that the risk/hazard is identical for the existing two-pond configuration and the equivalent pond. Therefore, the construction of a single spill control pond cannot be justified from the basis of risk alone. Also, the tank option does not reduce the hazard from a spill, compared to the pond configuration, for spills of TCE or nitric acid, and has only marginally

reduced risk compared to the pond configuration for a spill of carbon tetrachloride. Because of this, it may be difficult the extra expense of capturing tanks.

G.5.1 Building 707 Carbon Tetrachloride Tank Spill Into North Walnut Creek

This section of the appendix models a release of carbon tetrachloride from a 5040 gallon tank at Building 707. The entire tank contents are assumed to flow into North Walnut Creek without any carbon tetrachloride dissipating into the atmosphere, which is a simplifying if very conservative assumption because water ingestion is the only pathway analyzed. Three separate scenarios are used in this model, all of which are identical except for the receiving pond configuration. In all scenarios, the pathway modeled is ingestion; in other words, it is assumed that an individual living on plant site drinks 2 liters per day of contaminated water.

In the first scenario (analyzed in Section 5.1.1, No Action Alternative), the carbon tetrachloride flows into the presently used configuration of Ponds A-1 and A-2. There the contaminant mixes with the ponds. Since the ingestion period is extremely long (30 years in this model), it is assumed that both ponds reach equilibrium, and the carbon tetrachloride concentrations will be the same in all ponds.

In the second scenario (analyzed in Section 5.1.2, Replace Existing Ponds A-1 and A-2 With One Spill Control Pond), the carbon tetrachloride flows into a single spill control pond, with the same volume as present-day Ponds A-1 and A-2. There the contaminant mixes with the pond to form a homogeneous solution.

In the third scenario (analyzed in Section 5.1.3, Use of Tanks to Capture Spill), tanks are used to contain the spill. It is assumed that the tanks are 100 percent effective, and none of the carbon tetrachloride escapes containment.

G.5.1.1 Capture Using Existing Ponds

The ultimate carbon tetrachloride concentration is equal to the total amount of carbon tetrachloride released, divided by the total volume of the ponds. The resulting concentration of carbon tetrachloride is:

Conc = $(5040 \text{ gal x } 1.595^1 \text{ x } 3.785 \text{ liters/gal x } 1 \text{ gram/} 1000 \text{ liters}) / [(0.33E6 \text{ gal } + 2.04E6 \text{ gal}) \text{ x } 3.785 \text{ liters/gal}] = 3.39E-6 \text{ g/L} = 3.39 \text{ ug/L}.$

The cancer risk associated with daily ingestion of water contaminated with 3.39 ug/L of carbon tetrachloride is calculated using the following formula taken from EPA's Risk Assessment Guide for Superfund², modified for ingestion only. The oral slope factor for carbon tetrachloride is taken from the IRIS database.³ The cancer risk is:

Risk = [Conc x EF x ED x IR_w x SF_o]/[BW x AT x 365 day/yr x (1000 ug/mg)]

where:

Conc = contaminant concentration = 3.39 ug/l

EF = exposure frequency = 350 day/yr

ED = exposure duration = 30 yr

 $IR_w = \text{water drinking rate} = 2 \frac{1}{\text{day}}$

 $SF_o = \text{oral slope factor} = 0.13 \text{ kg-day/mg}$

BW = receptor body weight = 30 kg

AT = averaging time = 70 yr

Inserting these values into the equation:

Risk = $[(3.39 \text{ ug/L}) \times (350 \text{ day/yr}) \times (30 \text{ yr}) \times (2 \text{ L/day}) \times (0.13 \text{ kg-day/mg})]/[(70 \text{ kg}) \times (70 \text{ yr}) \times (365 \text{ day/yr}) \times (1000 \text{ ug/mg})] = 1.21\text{E-5}$ excess risk of contracting cancer. When added to the baseline risk of 4.9E-6, this comes to 1.7E-5 total risk.

¹The specific gravity of carbon tetrachloride at 20 C, taken from Page 3-25 of Perry's Chemical Engineers' Handbook, Fifth Edition.

²Environmental Protection Agency, Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final, EPA/540/1-89/002, December 1989.

³IRIS Database Update, dated June 30, 1993.

Assumptions:

- 1. It is assumed that all of the carbon tetrachloride goes to the ponds. Actually, much of the contaminant will volatilize.
- 2. It is assumed that the ponds' concentration of carbon tetrachloride remains undiluted for 30 years of ingestion. The actual concentration will be diluted quickly from volatilization, inflow of precipitation water, etc.
- 3. It is assumed that an individual will use water from the ponds for his drinking water source. In fact, it is highly doubtful that a resident at Rocky Flats would wish to drink the pond water, as opposed to using municipally supplied water.
- 4. All pathways are ignored except for water ingestion.

G.5.1.2 Replace Existing Ponds A-1 and A-2 With One Spill Control Pond

The ultimate carbon tetrachloride concentration is equal to the total amount of carbon tetrachloride released, divided by the total volume of the single pond. This pond's volume is equivalent to the volume of existing ponds A-1 and A-2. The resulting concentration of carbon tetrachloride is identical to that calculated in Section 5.1.1, and is equal to 3.39 ug/l.

The cancer risk associated with daily ingestion of water contaminated with 3.39 ug/l of carbon tetrachloride is identical to that calculated in Section 5.1.1, and equals 1.21E-5 risk of contracting cancer. When added to the background risk of 5.1E-6, this comes to 1.7E-5 total risk.

Assumptions:

- 1. It is assumed that all of the carbon tetrachloride goes to the ponds. Actually, much of the contaminant will volatilize.
- 2. It is assumed that the ponds' concentration of carbon tetrachloride remains undiluted for 30 years of ingestion. The actual concentration will be diluted quickly from volatilization, inflow of precipitation water, etc.

- 3. It is assumed that an individual will use water from the ponds for his drinking water source. In fact, it is highly doubtful that a resident at Rocky Flats would wish to drink the pond water, as opposed to using municipally supplied water.
- 4. All pathways are ignored except for water ingestion.

G.5.1.3 Use of Tanks to Capture Spill

It is assumed that all of the spill is contained in the tanks, and that none of it is subsequently released. Under this assumption, there is no pathway to a receptor, and there is no risk. So the total risk is equal to baseline, and equals 4.9E-6.

Assumptions:

- 1. All pathways are ignored except for water ingestion.
- 2. It is assumed that all of the carbon tetrachloride is captured by the tanks, and that the tanks never release any contaminated water.

G.5.1.4 Comparison of Risk

Table G-2 below compares the different risks after a carbon tetrachloride spill under each of the different scenarios.

Table G-2 Risks After a CCl₄ Spill

	Existing Ponds	Single Spill Control Pond	Tanks
Risk	1.7E-5	1.7E-5	4.9E-6

G.5.2 Trichloroethylene Spill into the South Interceptor Ditch

This section of the appendix models a release of 110 gallons of trichloroethylene (TCE). The entire tank contents are assumed to flow into the South Interceptor Ditch without any

TCE dissipating into the atmosphere, a simplifying assumption. Two separate scenarios are used in this model, which are identical except for the receiving pond configuration. In both scenarios, the pathway modeled is ingestion; in other words, it is assumed that an individual living on plant site drinks 2 liters per day of contaminated water.

In the first scenario (analyzed in Section 5.2.1, No Action Alternative), the TCE flows into the presently used configuration of Pond C-2. There the contaminant mixes with the pond and its concentration is assumed to become uniform.

In the second scenario (analyzed in Section 5.2.2, Use of Tanks to Capture Spill), a tank is used to contain the spill. It is assumed that the tank is 100 percent effective, and none of the TCE escapes containment.

G.5.2.1 Capture by Existing Pond

The ultimate TCE concentration is equal to the total amount of TCE released, divided by the total volume of the pond. The resulting concentration of TCE is:

Conc = $(110 \text{ gal x } 1.466^4 \text{ x } 3.785 \text{ liters/gal x } 1 \text{ gram}/1000 \text{ liters})/[4.96E6 \text{ gal x } 3.785 \text{ liters/gal}] = 3.25E-8 \text{ g/L} = 0.033 \text{ ug/L}.$

The non-cancer risk associated with daily ingestion of water contaminated with 0.033 ug/l of TCE is calculated as a hazard quotient using the following formula taken from EPA's Risk Assessment Guide for Superfund⁵. The reference doses for TCE are taken from EPA's memo, Risk-Based Concentration Table, Third Quarter 1993.⁶ The hazard quotient is:

 $HQ = [Conc \times EF \times ED \times (IR_w/RfD_o)]/[BW \times AT \times 365 \text{ day/yr} \times (1000 \text{ ug/mg})]$

⁴The specific gravity of TCE at 20 C, taken from Page 3-43 of Perry's Chemical Engineers' Handbook, Fifth Edition.

⁵Environmental Protection Agency, Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final, EPA/550/1-89/002, December 1989.

Memo from Roy L. Smith, entitled "Risk-Based Concentration Table, Third Quarter 1993, dated July 9, 1993.

where:

Conc = contaminant concentration = 0.033 ug/L

EF = exposure frequency = 350 day/yr

ED = exposure duration = 30 yr

 IR_{w} = water drinking rate = 2 1/day

 $RfD_0 = oral reference dose = 6E-3 kg-day/mg$

BW = receptor body weight = 70 kg

AT = averaging time = 70 yr

Inserting these values into the equation:

HQ = $[(0.033 \text{ ug/l}) \times (350 \text{ day/yr}) \times (30 \text{ yr}) \times (2 \text{ l/day})/(6\text{E}-3 \text{ kg-day/mg})]/[(70 \text{ kg}) \times (70 \text{ yr}) \times (365 \text{ day/yr}) \times (1000 \text{ ug/mg})] = 6.56\text{E}-5$. When added to the baseline Hazard Index of 0.071, the total hazard is 0.071.

G.5.2.2 Use of Tanks to Capture Spill

It is assumed that all of the spill is contained in the tanks, and that none of it is subsequently released. Under this assumption, there is no pathway to a receptor, and there is no excess hazard. So the hazard is equal to baseline, which is 0.071.

Assumptions:

- 1. All pathways are ignored except for water ingestion.
- 2. It is assumed that all of the TCE is captured by the tanks, and that the tanks never release any contaminated water.

G.5.2.3 Comparison of Hazard

Table 5.3 below compares the different Hazard Indices after a TCE spill under both scenarios. The difference in Hazard Index is not significant.

Table G-3
Hazard Indices After a Spill of Trichloroethylene

	Existing Ponds	Tanks
Hazard Index	0.071	0.071

G.5.3 Building 910 Nitric Acid Spill Into South Walnut Creek

This section of the appendix models a release of nitric acid from a 2000 gallon tank outside Building 910. The entire tank contents are assumed to degrade to nitrate, and flow into South Walnut Creek without any nitrate dissipating into the atmosphere or ground, a simplifying if very conservative assumption. Three separate scenarios are used in this model, all of which are identical except for the receiving pond configuration. In all scenarios, the pathway modeled is ingestion; in other words, it is assumed that an individual living on plant-site drinks 2 liters per day of contaminated water.

In the first scenario (analyzed in Section 5.3.1, No Action Alternative), the nitrate flows into the presently used configuration of Ponds B-1 and B-2. There the contaminant mixes with the ponds. Since the ingestion period is extremely long (30 years in this model), it is assumed that all ponds reach equilibrium, and the nitrate concentrations will be the same in all ponds.

In the second scenario (analyzed in Section 5.3.2, Replace Existing Ponds B-1 and B-2 With One Spill Control Pond), the nitrate flows into a single spill control pond, with the same volume as present-day ponds B-1 and B-2. There the contaminant mixes with the pond.

In the third scenario (analyzed in Section 5.3.3, Use of Tanks to Capture Spill), tanks are used to contain the spill. It is assumed that the tanks are 100% effective, and none of the nitrate escapes containment.

G.5.3.1 Capture by Existing Ponds

The ultimate nitrate concentration is equal to the total amount of nitrate released, divided by the total volume of the ponds. The resulting concentration of nitrate is

Conc = $(2000 \text{ gal x } 1.502^7 \text{ x } 3.785 \text{ liters/gal x } 1 \text{ gram/} 1000 \text{ liters}) / [(0.35E6 \text{ gal } + 1.01E6 \text{ gal}) \text{ x } 3.785 \text{ liters/gal}] = 2.21E-6 \text{ g/L} = 2.21 \text{ ug/L}.$

The non-cancer hazard quotient associated with daily ingestion of water contaminated with 2.21 ug/L of nitrate is calculated as a hazard quotient using the following formula taken from EPA's Risk Assessment Guide for Superfund⁸. The reference doses for nitrate are taken from the IRIS database.⁹ The hazard quotient is:

 $HQ = [Conc \times EF \times ED \times (IR_w/RfD_o)]/[BW \times AT \times 365 \text{ day/yr} \times (1000 \text{ ug/mg})]$

where:

Conc = contaminant concentration = 2.21 ug/L

EF = exposure frequency = 350 day/yr

ED = exposure duration = 30 yr

 IR_w = water drinking rate = 2 1/day

RfD_o = oral reference dose = 1.60 kg-day/mg

BW = receptor body weight = 70 kg

AT = averaging time = 70 yr

Inserting these values into the equation:

HQ = $[(2.21 \text{ ug/L}) \times (350 \text{ day/yr}) \times (30 \text{ yr}) \times (2 \text{ l/day})/(1.60 \text{ kg-day/mg})]/[(70 \text{ kg}) \times (70 \text{ yr}) \times (365 \text{ day/yr}) \times (1000 \text{ ug/mg})] = 1.6\text{E}-5$. When added to the baseline hazard index of 0.54, the resulting Hazard Index is 0.54.

⁷The specific gravity of nitric acid at ambient (15 to 20 C), taken from Page 3-17 of Perry's Chemical Engineers' Handbook, Fifth Edition.

⁸Environmental Protection Agency, Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final, EPA/550/1-89/002, December 1989.

⁹IRIS Database Update, dated June 30, 1993.

Assumptions:

- 1. It is assumed that all of the nitrate goes to the ponds. Actually, much of the contaminant will seep into the ground, etc.
- 2. It is assumed that the ponds' concentration of nitrate remains undiluted for 30 years of ingestion. The actual concentration will be diluted quickly from inflow of precipitation water, etc.
- 3. It is assumed that an individual will use water from the ponds for his drinking water source. In fact, it is highly doubtful that a resident at Rocky Flats would wish to drink the pond water, as opposed to using municipally supplied water.
- 4. All pathways are ignored except for water ingestion.

G.5.3.2 Replace Existing Ponds B-1 and B-2 With One Spill Control Pond

The ultimate nitrate concentration is equal to the total amount of nitrate released, divided by the total volume of the single pond. The pond's volume is equivalent to the volume of existing Ponds B-1 and B-2. The resulting concentration of nitrate is identical to that calculated in Section 5.3.1, and is equal to 2.21 ug/L.

The hazard associated with daily ingestion of water contaminated with 2.21 ug/L of TCE is identical to that calculated in Section 5.3.1, and the Hazard Quotient equals 1.64E-5. When added to the baseline hazard of 0.54, the resulting Hazard Index is 0.54.

Conservative Assumptions:

- 1. It is assumed that all of the nitrate goes to the pond. Actually, much of the contaminant will seep into the ground, etc.
- 2. It is assumed that the pond's concentration of nitrate remains undiluted for 30 years of ingestion. The actual concentration will be diluted quickly from inflow of precipitation water, etc.
- 3. It is assumed that an individual will use water from the pond for his drinking water source. It is highly doubtful that a resident at Rocky Flats would wish to drink the pond water, as opposed to using municipally supplied water.

Nonconservative Assumption:

1. All pathways are ignored except for water ingestion.

G.5.3.3 Use of Tanks to Capture Spill

It is assumed that all of the spill is contained in the tanks, and that none of it is subsequently released. Under this assumption, there is no pathway to a receptor, and there is no hazard. So the Hazard Index equals baseline, which is 0.54.

Assumptions:

- 1. All pathways are ignored except for water ingestion.
- 2. It is assumed that all of the nitrate is captured by the tanks, and that the tanks never release any contaminated water.

G.5.3.4 Comparison of Hazard

Table 5.4 below compares the different risks posed by the nitrate spill under each of the different scenarios. Differences in Hazard Indices are unnoticeable.

Table G-4
Hazard Resulting From a Nitrate Spill

	Existing Ponds	Single Spill Control Pond	Tanks
Hazard Index	0.54	0.54	0.54

G.7 Water Storage /Transfer Options

Water storage and transfer involves the routine collection and storage of the Rocky Flats sewage treatment plant (STP) effluent and stormwater runoff from the plant site. Water is then transferred to a location where it can be isolated for proper monitoring before being released off-site. Water storage and transfer alternatives analyzed include recycling all or part of the STP and stormwater on-site, changing pond water release points, and spray

evaporating more of the pond water on-site in leu of releasing it off-site. The alternatives in this category were presented in Section 5 of the IM/IRA Report as proposed additional management tools rather than mutually exclusive alternatives. Hence each alternative will be evaluated for potential risk reduction relative to the no action or baseline risk given in Appendix D of this report.

G.7.1 Existing Pond Water Management Plan

The risks resulting from existing pond water management for routine collection, storage and transfer operations (described in Section 2.2) were assumed to be the risks calculated in the baseline risk assessment from the chemical concentration data measured in each pond. These total cancer and non-cancer risks are given in Appendix D in Tables D-1.1 to D-1.8.

G.7.2 Recycle / Tank STP Water

From Figure G-1 and Table G-1, the current flow from the STP into S. Walnut Creek occurs at Pond B-3 at the average flow rate of 141 kgal/day (thousand gallons per day). It can also be seen that this is currently the major source of water to Pond B-3. The Pond B-3 water then flows to Pond B-4 and then B-5 where it is held until being transferred to Pond A-4 for release.

The contaminants of concern (COCs) for Pond B-3 (Site 4) in the baseline risk assessment included two radionuclides with a combined lifetime excess cancer risk (LECR) of 5.4E-7. See Table D-2.4 in Appendix D. The metal, inorganic, and organic COCs combined to produce a hazard index of 0.0004. Since these risk levels are low compared to EPA standards, reducing or eliminating the STP effluent flow into the pond system by recycling the water to use on plant site or collecting the effluent in a tank will not appreciably reduce the human health risk for a future on-site receptor. However, it could reduce the release of water and spread of contamination off-site.

G.7.3 Direct Spray Evaporate Ponds

Currently spray evaporation is used to limit the amount of water transferred and released from Pond A-2 and the Landfill Pond. One proposed action is to use spray evaporation in smaller Ponds A-1, A-2, B-1, B-2 to keep these ponds at lower levels between precipitation events. The net effect of spray evaporation on contaminant levels in the pond being sprayed is normally an increase. However, if the volume sprayed is limited to the precipitation inflow, then spraying does not concentrate contaminants in the pond and so does not affect risk at the pond. Spray evaporating Ponds B-1 and B-2 under normal conditions (no spill) would reduce or eliminate the need to transfer water from Pond B-2 to A-2 and reduce the potential to spread low level contamination. In a previous analysis, the additional risk posed to off-site receptors from spray evaporation via the direct inhalation pathway was evaluated for Pond B-2 for several volatile organics and was shown to be below the EPA acceptable risk range for carcinogenic and noncarcinogenic risk. A copy of this analysis, "Risks Due To Spray Evaporation of B-2 Pond" -RSR-016-92 is attached.

M.7.4 Redirect Water from Woman Creek to Walnut Creek Downstream of Pond A-4

One water transfer alternative is to divert water in Woman Creek to Walnut Creek down stream of A-4 through an on-site pipeline. Since this action would not reroute water flowing into any of the ponds on plant-site or introduce contaminants, then the contaminant concentrations in the ponds and hence the risk would not be expected to change.

Table G-1: South Walnut Creek Flows

				Monthly		100			
				MOITHLY FORG FIOW DOIG	OII DIIO	v Dala			
				S. Waln	S. Walnut Creek Flows	OWS			
	Waste Water	Central							
·	Treatment Plant	Ave Drain Ditch from	B1 Bypass Pipeline	Central Ave	B1 Transfer	ō		B3 Natural B4 Natural Flow to Flow to	B5 Discharge
		SW022	1		10 62	IO AZ	Z	62006 02006	to A4
1001	(INIBOIL)	(Mgai)	(Mgai)	(Mgai)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)
January	6.41								
Feburary	4.96								
March	6.03								
April	9:00								
May	6.14								
June	5.07		0.78						
July	4.03		3.42						
August	3.41		5.82						
September	3.00		1.79						
October	3.41	0.25	1.25						
November	3.30	8.53	1.86						7.20
December	3.41	3.10	1.01	-		-			11.40
1991 Total Flow	55.17								
Yearly Ave Flow Rate (kaal/dav)	151								
1992									
January	3.9	0.03	1.22		0.00	0.00		ن خ	3.60
Feburary	3.5	0.00	1.14		0.00	0.00		n. G	5,90
March	2.0	5.41	12.60		0.00	00'0		Ö,	5.76
April	3.9	0.14	3.32		0.00	0.00		ن ت	5.89
Мау	4.0	1.51	r. G		0.00	0.00		13.33	0.00
June	4.5	0.34	7.87		0.00	0.00		16.14	10.02
July	4.3	0.00	15.01		0.00	0.00		14.90	8.60
August	4.7	0.94	ŗ,		0.00	0.00		21.49	0.00
September	3.9	0.00	16.76		0.00	0.00		11.69	9.35
October	4.0	0.53	م		0.02	0.33		n. d.	0.00
November	4.5	3.29	1.15		0.00	0.00		n, d.	5.63
December	5.3	0.89	0.81		.000	0.00		n. d.	9.74
1992 Total Flow	51.5	13.07			0.02	0.33			64.49
Yearly Ave Flow	141	35	210		ָרָ קר	000	7	507	177
kare (kgai/day)		3	717		20.0	U.YC	<u>-</u>)OC	//!

Table G-2: North Walnut Creek Flows

				111.					
			M	Moniniy rong Flow Daid	ond Flo	w Dara			
				N. Walnt	N. Walnut Creek Flows	lows			
	No.	A1 Bypass		A1 Outlet		Landfill	Landfill	Landfill	A 3
-	Watnut Creek		A1 Bypass Plpeline to A1	leak to A2	A2 Spray Evap	Effluent to A3	Effluent to	Spray	Discharge to A4
	SW093 (Mgal)	GS013 (Maal)	(Maal)	(Madi)	(Maa)	(Mag)	(Maa)	(Mool)	(GS012)
1661						0			(m)
January									
Feburary									
March									
April									
Мау		50.70							
June	-	34.30							
Anc		23.60							
August		30.90							٠
September		14.80							-
October	2.80	G		٠					
November	6.78	54.00							
December	7.81	24.70							11.30
1991 Total Flow									
Yearry Ave Flow Rate (kgal/day)		1089							
1992									
January	6.81	21.80	0.00	0.00	0.00		0.00	0.00	00:00
Feburary	5.81	15.70	0.00	0.00	0.00		0.00	0.00	2.50
March	26.09	125.60	0:00	0.00	0.00		0.87	0.00	9.59
April	90.6	45.30	0.00	0.00	0.00		0:00	0.00	3.09
May	8.82	39.30	0.41	0.25	0:00		0.00	0.00	0.00
June	6.23	58.30	0.81	0.51	0.26		0.00	0.0	2.45
July	4.02	98.00	0.00	0.00	0.37		0.00	0.00	0.00
August	8.14	9.94	0.00	0.00	0.37		0.00	0.00	1.79
September	2.67	12.10	0.00	0.00	0.36		0.00	0.25	5.16
October	5.14	ن د	0.00	0.0	0.00		0.00	0.32	0.00
November	7.00	1.19	0:00	0:00	0.00		0.00	0.00	<u>.</u> 20.
December	9.24	39.80	0.00	0.00	000		0.00	0.0	0.00
1992 Total Flow	99.07		1.22	0.76	1.36		0.87	0.57	25.62
Yearry Ave Flow Rate (kaal/dav)	271	1305	3.3	2.1	3.7		2.4	9:1	70.0
The fire of the									

Table G-3: Regulated Discharges and Woman Creek Flows

					Month	/ Pond	Monthly Pond Flow Data			
		Regulated Discharges	Discharges				Мол	Woman Creek Flows	lows	
									:	
	7000	7	Pond C2	Walnut Creek at	Woman Creek at	Mower Difch at	soum Interceptor N. Woman S. Woman Ditch Input	S. Woman	south Interceptor Ditch Input	
	(6501)	(68007)	10 800	GS003	GS001	indlana GSO02	Creek	Creek	to C2	Antelope Springs
	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Waal)	(Maal)	(Maal)	(Man)
1661									(a c	(DALL)
January	1.05	8.95	0.00							
Feburary	11.52	6.77	0.00	•						
March	13.19	2.94	0.00							
April	7.16	4.46	0.00							
May	14.93	8.32	0.00			7.17	20.50			
June	46.34	7.10	10.77			09'6	61.09			
July	3.92	1.53	0.00		0.00	0.30	5.38			
August	7.16	3.37	0.00	•	0.00	1.98	5.05			
September	12.52	0.67	0.00		0.00	0.20	6.15			
October	7.95	2.45	0.00		0.00	0.04	ر. م		0.02	
November	0.00	8.86	0.00	,	0:00	31.11	26.46		3.24	
December	27.08	5.90	0.00		1.57	15.17	20.61		0.75	
1991 Total Flow	152.80	64.31	10.77							
redny Ave riow Rate (kaai/dav)	419	176	30			268	629			
1992										
January	1.08	7.33	0.00	8.13	35.61	5.88	23.48		1.03	
Feburary	5.31	5.76	0.00	4.34	32.80	3.64	17.19		0.26	
March	44.31	15.83	8.48	77.77	49.99	20.17	47.77		25.57	
April	17.49	12.91	7.60	20.72	40.49	8.00	14.06		0.37	
May	11.80	3.55	0.00	11.23	11.84	20.31	9.75		0.25	
June	5,15	1.85	0.00	6.42	14.60	24.78	10.21		0.58	
July	16.28	0.05	0.00	16.71	0.00	8.02	6.31		0.01	
August	0:00	1.22	0.00	0.86	0.00	0.19	8.13		3.49	
September	27.83	low flow	00'0	25.51	0.01	0.34	9.51		0.00	
October	8.91	1.60	0.00	7.77	d	n, d.	ņ.		000	
November	0.00	3.33	0.00	0.00	0.02	3.05	25.39		0.50	-
December	24.12	5.69	0.00	22.54	n, d.	3.61	25.92		0.39	
1992 Total Flow	162.27	59.10	16.08	202.00					32.46	
Yearry Ave Flow	443	191	44	552	610	203	500		8	
KUIÐ (KÖMI/NUV)				-	2	272	2,0		6	

DRAFT

1-C90-EPR-SW.03

Containment of Spills Within the Rocky Flats Drainages

This procedure describes actions that should be taken to contain a spill which has entered a drainage and is threatening to enter the surface water detention ponds in the Buffer Zone. These actions will help to minimize damage to the environment and to plant operations.

Driver(s)

- a) Agreement in Principle (AIP)
- b) DOE Order 5400.1, General Environmental Protection Program

1-C91-EPR-SW.01

Requirement for Control and Disposition of Incidental Waters

This procedure contains the actions required for the control and disposition of incidental waters. The purpose of this procedure is to assure environmental protection by controlling, containing, sampling, analyzing, and/or discharging incidental waters originating from Rocky Flats sources.

Driver(s)

- a) Best Management Practices (BMPs)
- b) Safe Drinking Water Act (SDWA)
- c) Clean Water Act (CWA)

1-C92-EPR-SW.02

Control of Rocky Flats Flood Waters

This procedure is intended to provide instructions for controlling and containing excessive runoff and to minimize flooding. This instruction falls within the context of Rocky Flats water management plans.

- a) Colorado State regulations on dam safety
- b) DOE Order 5400.1, General Environmental Protection Program

(Continued)

5-21000-OPS-SW.01 Surface Water Data Collection Activities

This Standard Operation Procedure (SOP) describes procedures that will be used at the Rocky Flats Plant (RFP) in performance of field activities at surface water collection sites. This SOP describes initial site evaluation procedures and outlines an order of data collection activities to be performed at each site by a two or three member field crew. Details are provided in this document so that all sampling personnel following these procedures will deliver samples to the laboratory and will perform discharge and field parameter measurements in a consistent manner.

Driver(s)

- a) DOE Order 5400.1, General Environmental Protection Program
- b) EPM/SWD NPDES-FFCA Operations Sampling Plan

5-21000-OPS-SW.02

Field Measurements of Surface Water Field Parameters

This SOP describes procedures that will be used at RFP to obtain measurements of surface water parameters in the field. These parameters are temperature, dissolved oxygen, pH, alkalinity, specific conductance, total residual chlorine, free chlorine, turbidity, hardness and nitrates. This SOP describes field measurement procedures, personnel responsibilities and qualifications, and quality assurance/quality control (QA/QC).

- a) NPDES-FFCA Operations Sampling Plan
- b) DOE Order 5400.1, General Environmental Protection Program

(Continued)

5-21000-OPS-SW.03 Surface Water Sampling

This SOP describes procedures, documentation and equipment that will be used to collect water quality samples from surface water data collection sites at RFP. More than one sampling method is required because flow conditions vary from site to site. In consideration of these varied conditions, this SOP describes methods that are to be used on the site-specific flow conditions.

Driver(s)

a) NPDES-FFCA

DRAFT

b) DOE Order 5400.1, General Environmental Protection Program

5-21000-OPS-SW.04 Discharge Measurement

This SOP describes procedures that will be used at RFP to measure surface water discharge in streams and ditches or from seeps and pipes. Discharge is defined as the volume rate of flow of water, including any substances suspended or dissolved in the water. This document outlines a set of standard methods for various flow conditions at RFP.

This SOP describes equipment and procedures that will be used for field data collection and documentation in order to attain acceptable standards of accuracy, precision, comparability, representativeness and completeness.

- a) NPDES-FFCA
- b) DOE Order 5400.1, General Environmental Protection Program

DRAFT

DRAFT

APPENDIX H STANDARD OPERATING PROCEDURES FOR POND WATER MANAGEMENT

(Continued)

1-15200-EPIP-12.14
Water Detention Pond Dam Failure

This procedure describes emergency response actions to be taken in the event of actual or potential unplanned releases of detention pond dam water from RFP. It also defines seven action levels (0 through 6) for categorizing conditions at the dams up to and including dam failure.

- a) Colorado Radiological Emergency Response Plan, Rocky Flats Plant
- b) DOE Order 5500.1B, Emergency Management System
- c) DOE Order 5500.3A, Planning and Preparedness for Operational Emergencies

DRAFT

DRAFT

APPENDIX H STANDARD OPERATING PROCEDURES FOR POND WATER MANAGEMENT

(Continued)

5-21000-OPS-SW.19

Control Procedure for Water Discharges from Surface Water Control Ponds A-3, A-4, B-3, B-5, C-1 and C-2

This procedure describes sampling, analytical, reporting and approval activities required prior to initiating discharges, and describes operational and monitoring activities during actual discharges.

Driver(s)

a) Agreement in Principle (AIP)

b) DOE Order 5400.1, General Environmental Protection Program

5-21000-OPS-SW.20

Control Procedure for Water Spraying from the Landfill Pond and Pond A-2 and for Internal Pond Water Transfers

This procedure describes pre-operational activities including sampling, analytical and approval requirements, and describes operational controls governing actual operations.

Driver(s)

a) Agreement in Principle (AIP)

b) DOE Order 5400.1, General Environmental Protection Program

5-21000-OPS-SW.27

Dam Inspection and Monitoring Procedure

The purpose of the dam inspection procedure is to identify existing or potential dam safety concerns and to provide a shorter frequency between formalized dam inspections currently performed by other groups or agencies. Dam safety monitoring is performed for previously identified dam safety concerns.

Driver(s)

a) Colorado State regulations on dam safety

b) DOE Order 5400.1, General Environmental Protection Program

DRAFT

DRAFT

APPENDIX H STANDARD OPERATING PROCEDURES FOR POND WATER MANAGEMENT

(Continued)

1-15200-EPIP-12.14 Water Detention Pond Dam Failure

This procedure describes emergency response actions to be taken in the event of actual or potential unplanned releases of detention pond dam water from RFP. It also defines seven action levels (0 through 6) for categorizing conditions at the dams up to and including dam failure.

- a) Colorado Radiological Emergency Response Plan, Rocky Flats Plant
- b) DOE Order 5500.1B, Emergency Management System
- c) DOE Order 5500.3A, Planning and Preparedness for Operational Emergencies